Suppr超能文献

语境化教授在线教学评估中的性别差距。

Contextualizing gender disparities in online teaching evaluations for professors.

机构信息

Information School, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Department of Psychology, Tsinghua University, Beijing, China.

出版信息

PLoS One. 2023 Mar 16;18(3):e0282704. doi: 10.1371/journal.pone.0282704. eCollection 2023.

Abstract

Student evaluation of teaching (SET) is widely used to assess teaching effectiveness in higher education and can significantly influence professors' career outcomes. Although earlier evidence suggests SET may suffer from biases due to the gender of professors, there is a lack of large-scale examination to understand how and why gender disparities occur in SET. This study aims to address this gap in SET by analyzing approximately 9 million SET reviews from RateMyProfessors.com under the theoretical frameworks of role congruity theory and shifting standards theory. Our multiple linear regression analysis of the SET numerical ratings confirms that women professors are generally rated lower than men in many fields. Using the Dunning log-likelihood test, we show that words used in student comments vary by the gender of professors. We then use BERTopic to extract the most frequent topics from one- and five-star reviews. Our regression analysis based on the topics reveals that the probabilities of specific topics appearing in SET comments are significantly associated with professors' genders, which aligns with gender role expectations. Furtherly, sentiment analysis indicates that women professors' comments are more positively or negatively polarized than men's across most extracted topics, suggesting students' evaluative standards are subject to professors' gender. These findings contextualize the gender gap in SET ratings and caution the usage of SET in related decision-making to avoid potential systematic biases towards women professors.

摘要

学生评教(SET)被广泛用于评估高等教育中的教学效果,并且可以显著影响教授的职业发展结果。尽管早期的证据表明 SET 可能由于教授的性别而存在偏差,但缺乏大规模的研究来理解 SET 中性别差距是如何以及为何产生的。本研究旨在通过在角色一致性理论和标准转移理论的理论框架下,分析来自 RateMyProfessors.com 的约 900 万份 SET 评论,来解决 SET 中的这一差距。我们对 SET 数值评分的多元线性回归分析证实,在许多领域,女教授的评分普遍低于男教授。通过 Dunning 对数似然检验,我们表明学生评论中使用的词语因教授的性别而异。然后,我们使用 BERTopic 从一星级和五星级评论中提取最常见的主题。我们基于这些主题的回归分析表明,在 SET 评论中出现特定主题的概率与教授的性别显著相关,这与性别角色期望一致。此外,情感分析表明,在大多数提取的主题中,女教授的评论比男教授的评论更加两极分化,这表明学生的评价标准受到教授性别的影响。这些发现使 SET 评分中的性别差距具体化,并警告在相关决策中使用 SET 时要避免对女教授产生潜在的系统性偏见。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验