Suppr超能文献

学生对教学的评价:教授定量课程可能会对职业生涯造成危害。

Student evaluations of teaching: teaching quantitative courses can be hazardous to one's career.

作者信息

Uttl Bob, Smibert Dylan

机构信息

Department of Psychology, Mount Royal University, Calgary, Alberta, Canada.

Department of Psychology, Saint Mary's University, Halifax, Nova Scotia, Canada.

出版信息

PeerJ. 2017 May 9;5:e3299. doi: 10.7717/peerj.3299. eCollection 2017.

Abstract

Anonymous student evaluations of teaching (SETs) are used by colleges and universities to measure teaching effectiveness and to make decisions about faculty hiring, firing, re-appointment, promotion, tenure, and merit pay. Although numerous studies have found that SETs correlate with various teaching effectiveness irrelevant factors (TEIFs) such as subject, class size, and grading standards, it has been argued that such correlations are small and do not undermine the validity of SETs as measures of professors' teaching effectiveness. However, previous research has generally used inappropriate parametric statistics and effect sizes to examine and to evaluate the significance of TEIFs on personnel decisions. Accordingly, we examined the influence of quantitative vs. non-quantitative courses on SET ratings and SET based personnel decisions using 14,872 publicly posted class evaluations where each evaluation represents a summary of SET ratings provided by individual students responding in each class. In total, 325,538 individual student evaluations from a US mid-size university contributed to theses class evaluations. The results demonstrate that class subject (math vs. English) is strongly associated with SET ratings, has a substantial impact on professors being labeled satisfactory vs. unsatisfactory and excellent vs. non-excellent, and the impact varies substantially depending on the criteria used to classify professors as satisfactory vs. unsatisfactory. Professors teaching quantitative courses are far more likely not to receive tenure, promotion, and/or merit pay when their performance is evaluated against common standards.

摘要

高校使用匿名学生教学评价(SETs)来衡量教学效果,并就教师的聘用、解雇、重新任命、晋升、终身教职和绩效工资做出决策。尽管大量研究发现,SETs与各种教学效果无关因素(TEIFs)相关,如学科、班级规模和评分标准,但有人认为,这种相关性很小,并不损害SETs作为衡量教授教学效果的有效性。然而,以往的研究通常使用不恰当的参数统计和效应量来检验和评估TEIFs对人事决策的重要性。因此,我们使用14872份公开张贴的班级评价来研究定量课程与非定量课程对SET评分以及基于SET的人事决策的影响,每份评价代表每个班级中个体学生提供的SET评分的汇总。总共有来自美国一所中型大学的325538份个体学生评价为这些班级评价做出了贡献。结果表明,课程学科(数学与英语)与SET评分密切相关,对教授被评为满意与不满意、优秀与非优秀有重大影响,而且根据用于将教授分类为满意与不满意的标准不同,影响差异很大。当根据通用标准评估教学定量课程的教授的表现时,他们更有可能得不到终身教职、晋升和/或绩效工资。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72d/5426349/6fb1ffdd4586/peerj-05-3299-g001.jpg

相似文献

4
The numbers tell it all: students don't like numbers!数字说明了一切:学生们不喜欢数字!
PLoS One. 2013 Dec 16;8(12):e83443. doi: 10.1371/journal.pone.0083443. eCollection 2013.
6
Contextualizing gender disparities in online teaching evaluations for professors.语境化教授在线教学评估中的性别差距。
PLoS One. 2023 Mar 16;18(3):e0282704. doi: 10.1371/journal.pone.0282704. eCollection 2023.

引用本文的文献

8
Teaching Computational Reproducibility for Neuroimaging.神经影像学的计算可重复性教学
Front Neurosci. 2018 Oct 22;12:727. doi: 10.3389/fnins.2018.00727. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验