文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积和 BiGRU 双通道机制融合的中文医学文本分类模型。

A model of integrating convolution and BiGRU dual-channel mechanism for Chinese medical text classifications.

机构信息

School of Software, Henan University, Kaifeng, China.

School of Digital Arts and Communication, Shandong University of Art & Design, Jinan, China.

出版信息

PLoS One. 2023 Mar 16;18(3):e0282824. doi: 10.1371/journal.pone.0282824. eCollection 2023.


DOI:10.1371/journal.pone.0282824
PMID:36928266
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10019650/
Abstract

Recently, a lot of Chinese patients consult treatment plans through social networking platforms, but the Chinese medical text contains rich information, including a large number of medical nomenclatures and symptom descriptions. How to build an intelligence model to automatically classify the text information consulted by patients and recommend the correct department for patients is very important. In order to address the problem of insufficient feature extraction from Chinese medical text and low accuracy, this paper proposes a dual channel Chinese medical text classification model. The model extracts feature of Chinese medical text at different granularity, comprehensively and accurately obtains effective feature information, and finally recommends departments for patients according to text classification. One channel of the model focuses on medical nomenclatures, symptoms and other words related to hospital departments, gives different weights, calculates corresponding feature vectors with convolution kernels of different sizes, and then obtains local text representation. The other channel uses the BiGRU network and attention mechanism to obtain text representation, highlighting the important information of the whole sentence, that is, global text representation. Finally, the model uses full connection layer to combine the representation vectors of the two channels, and uses Softmax classifier for classification. The experimental results show that the accuracy, recall and F1-score of the model are improved by 10.65%, 8.94% and 11.62% respectively compared with the baseline models in average, which proves that our model has better performance and robustness.

摘要

最近,很多中国患者通过社交网络平台咨询治疗方案,但中文医疗文本包含丰富的信息,包括大量的医学术语和症状描述。如何构建一个智能模型,自动对患者咨询的文本信息进行分类,并为患者推荐正确的科室,这非常重要。为了解决中文医疗文本特征提取不足、准确率低的问题,本文提出了一种双通道中文医疗文本分类模型。该模型在不同粒度上提取中文医疗文本的特征,全面准确地获取有效的特征信息,最后根据文本分类为患者推荐科室。模型的一个通道侧重于与医院科室相关的医学术语、症状等词汇,给予不同的权重,用不同大小的卷积核计算相应的特征向量,从而得到局部文本表示。另一个通道使用 BiGRU 网络和注意力机制获取文本表示,突出整句的重要信息,即全局文本表示。最后,模型使用全连接层将两个通道的表示向量进行组合,并使用 Softmax 分类器进行分类。实验结果表明,与基线模型相比,该模型在平均准确率、召回率和 F1 分数上分别提高了 10.65%、8.94%和 11.62%,证明了我们的模型具有更好的性能和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/47bbaf4461b6/pone.0282824.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/ecd87f4ee9e3/pone.0282824.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/ca039ca1fc1b/pone.0282824.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/504000647706/pone.0282824.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/cd4311f3f59d/pone.0282824.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/5302b3431666/pone.0282824.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/3c845b7e8a75/pone.0282824.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/2626f4e07039/pone.0282824.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/0c2f646d4ace/pone.0282824.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/55a48e6a0ac7/pone.0282824.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/aef59f84602d/pone.0282824.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/5e92b3c67d11/pone.0282824.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/47bbaf4461b6/pone.0282824.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/ecd87f4ee9e3/pone.0282824.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/ca039ca1fc1b/pone.0282824.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/504000647706/pone.0282824.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/cd4311f3f59d/pone.0282824.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/5302b3431666/pone.0282824.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/3c845b7e8a75/pone.0282824.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/2626f4e07039/pone.0282824.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/0c2f646d4ace/pone.0282824.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/55a48e6a0ac7/pone.0282824.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/aef59f84602d/pone.0282824.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/5e92b3c67d11/pone.0282824.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d23/10019650/47bbaf4461b6/pone.0282824.g012.jpg

相似文献

[1]
A model of integrating convolution and BiGRU dual-channel mechanism for Chinese medical text classifications.

PLoS One. 2023

[2]
DCCL: Dual-channel hybrid neural network combined with self-attention for text classification.

Math Biosci Eng. 2023-1

[3]
Named Entity Recognition of Medical Text Based on the Deep Neural Network.

J Healthc Eng. 2022-3-7

[4]
Chinese text classification method based on sentence information enhancement and feature fusion.

Heliyon. 2024-8-24

[5]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[6]
Integrating machine learning with linguistic features: A universal method for extraction and normalization of temporal expressions in Chinese texts.

Comput Methods Programs Biomed. 2023-5

[7]
Author identification of literary works based on text analysis and deep learning.

Heliyon. 2024-1-29

[8]
[A customized method for information extraction from unstructured text data in the electronic medical records].

Beijing Da Xue Xue Bao Yi Xue Ban. 2018-4-18

[9]
Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT.

BMC Med Inform Decis Mak. 2022-12-1

[10]
Investigating Multi-Level Semantic Extraction with Squash Capsules for Short Text Classification.

Entropy (Basel). 2022-4-23

引用本文的文献

[1]
Assemble the shallow or integrate a deep? Toward a lightweight solution for glyph-aware Chinese text classification.

PLoS One. 2023

本文引用的文献

[1]
Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data.

Diagnostics (Basel). 2022-12-6

[2]
A Complete Process of Text Classification System Using State-of-the-Art NLP Models.

Comput Intell Neurosci. 2022

[3]
Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy.

Sensors (Basel). 2022-4-13

[4]
Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM.

Sensors (Basel). 2021-4-18

[5]
An Improved Double Channel Long Short-Term Memory Model for Medical Text Classification.

J Healthc Eng. 2021

[6]
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts.

Database (Oxford). 2017-1-1

[7]
A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing.

Sensors (Basel). 2018-7-6

[8]
A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews.

J Med Internet Res. 2018-1-22

[9]
Phenotypic Analysis of Clinical Narratives Using Human Phenotype Ontology.

Stud Health Technol Inform. 2017

[10]
Clinical information extraction applications: A literature review.

J Biomed Inform. 2017-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索