Suppr超能文献

基于 MobileNet V2 和 LSTM 的深度学习神经网络在皮肤病分类中的应用。

Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM.

机构信息

Department of Computer Science and Engineering, Gitam Institute of Technology, GITAM Deemed to be University, Rushikonda, Visakhapatnam 530045, India.

Tata Consultancy Services, Gachibowli, Hyderabad 500019, India.

出版信息

Sensors (Basel). 2021 Apr 18;21(8):2852. doi: 10.3390/s21082852.

Abstract

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region's image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.

摘要

深度学习模型在学习有助于精确理解复杂模式的特征方面非常有效。本研究提出了一种通过基于 MobileNet V2 和长短期记忆 (LSTM) 的深度学习对皮肤病进行分类的计算机化过程。MobileNet V2 模型被证明是高效的,具有更高的准确性,可以在轻量级计算设备上运行。所提出的模型在保持状态信息以进行精确预测方面非常有效。灰度共生矩阵用于评估疾病生长的进展。性能已与其他最先进的模型进行了比较,例如 Fine-Tuned Neural Networks (FTNN)、卷积神经网络 (CNN)、由 Visual Geometry Group (VGG) 开发的用于大规模图像识别的非常深的卷积网络以及经过少量更改扩展的卷积神经网络架构。使用了 HAM10000 数据集,所提出的方法的准确率超过 85%,优于其他方法。与传统的 MobileNet 模型相比,它在识别受影响区域方面的速度更快,计算量减少了近 2 倍,从而减少了计算工作量。此外,还设计了一个移动应用程序,用于即时和适当的操作。它可以帮助患者和皮肤科医生从皮肤病的初始阶段识别受影响区域的图像中的疾病类型。这些发现表明,所提出的系统可以帮助全科医生高效、有效地诊断皮肤状况,从而减少进一步的并发症和发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/945f/8074091/2632610aefd6/sensors-21-02852-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验