文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 FastAI 和 1-Cycle 策略对密集型 DenseNet-169 进行微调,以进行乳腺癌转移预测。

Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy.

机构信息

Department of Computer Science and Engineering, GITAM Institute of Technology, GITAM Deemed to be University, Visakhapatnam 530045, India.

Department of Computer Science and Engineering-AIML, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad 500090, India.

出版信息

Sensors (Basel). 2022 Apr 13;22(8):2988. doi: 10.3390/s22082988.


DOI:10.3390/s22082988
PMID:35458972
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9025766/
Abstract

Lymph node metastasis in breast cancer may be accurately predicted using a DenseNet-169 model. However, the current system for identifying metastases in a lymph node is manual and tedious. A pathologist well-versed with the process of detection and characterization of lymph nodes goes through hours investigating histological slides. Furthermore, because of the massive size of most whole-slide images (WSI), it is wise to divide a slide into batches of small image patches and apply methods independently on each patch. The present work introduces a novel method for the automated diagnosis and detection of metastases from whole slide images using the Fast AI framework and the 1-cycle policy. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 97.4% accuracy. In addition, a mobile application is developed for prompt and quick response. It collects user information and models to diagnose metastases present in the early stages of cancer. These results indicate that the suggested model may assist general practitioners in accurately analyzing breast cancer situations, hence preventing future complications and mortality. With digital image processing, histopathologic interpretation and diagnostic accuracy have improved considerably.

摘要

使用 DenseNet-169 模型可以准确预测乳腺癌的淋巴结转移。然而,目前淋巴结转移的识别系统是手动和繁琐的。一位精通淋巴结检测和特征描述过程的病理学家需要数小时来研究组织学幻灯片。此外,由于大多数全切片图像 (WSI) 的尺寸巨大,明智的做法是将幻灯片分成小的图像块,并在每个块上独立应用方法。本工作使用 Fast AI 框架和 1 周期策略,引入了一种基于全切片图像的自动诊断和转移检测的新方法。此外,它还将这种新方法与以前的方法进行了比较。所提出的模型的准确率超过了 97.4%,超过了其他最先进的方法。此外,还开发了一个移动应用程序,用于快速响应。它收集用户信息和模型,以诊断癌症早期的转移。这些结果表明,所提出的模型可以帮助全科医生准确分析乳腺癌情况,从而预防未来的并发症和死亡率。通过数字图像处理,组织病理学解释和诊断准确性得到了极大的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/4e1db6c217bf/sensors-22-02988-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/6a00713b417c/sensors-22-02988-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/95996853fc6b/sensors-22-02988-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/42670d945c8e/sensors-22-02988-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/6460ff4aa0d7/sensors-22-02988-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/19da0ed26622/sensors-22-02988-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/38055c178664/sensors-22-02988-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/8c64f57f3cc9/sensors-22-02988-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/9b4e247db9b5/sensors-22-02988-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/c331b03ca193/sensors-22-02988-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/bc0f8b496ce5/sensors-22-02988-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/a0b66c0fb323/sensors-22-02988-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/a74fac640277/sensors-22-02988-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/aa03b0d8915d/sensors-22-02988-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/8d23d55a114d/sensors-22-02988-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/6a9652020f30/sensors-22-02988-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/46b73666a975/sensors-22-02988-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/8291df97b612/sensors-22-02988-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/4e1db6c217bf/sensors-22-02988-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/6a00713b417c/sensors-22-02988-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/95996853fc6b/sensors-22-02988-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/42670d945c8e/sensors-22-02988-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/6460ff4aa0d7/sensors-22-02988-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/19da0ed26622/sensors-22-02988-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/38055c178664/sensors-22-02988-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/8c64f57f3cc9/sensors-22-02988-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/9b4e247db9b5/sensors-22-02988-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/c331b03ca193/sensors-22-02988-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/bc0f8b496ce5/sensors-22-02988-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/a0b66c0fb323/sensors-22-02988-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/a74fac640277/sensors-22-02988-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/aa03b0d8915d/sensors-22-02988-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/8d23d55a114d/sensors-22-02988-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/6a9652020f30/sensors-22-02988-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/46b73666a975/sensors-22-02988-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/8291df97b612/sensors-22-02988-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e7a/9025766/4e1db6c217bf/sensors-22-02988-g018.jpg

相似文献

[1]
Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy.

Sensors (Basel). 2022-4-13

[2]
Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model.

Mod Pathol. 2023-5

[3]
Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images.

Gastric Cancer. 2021-7

[4]
1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset.

Gigascience. 2018-6-1

[5]
Application of automated image analysis reduces the workload of manual screening of sentinel lymph node biopsies in breast cancer.

Histopathology. 2017-9-22

[6]
Comparison of pathologist-detected and automated computer-assisted image analysis detected sentinel lymph node micrometastases in breast cancer.

Mod Pathol. 2003-11

[7]
Detection of breast cancer lymph node metastases in frozen sections with a point-of-care low-cost microscope scanner.

PLoS One. 2019-3-19

[8]
Metastasis detection from whole slide images using local features and random forests.

Cytometry A. 2017-6

[9]
Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer.

Am J Surg Pathol. 2018-12

[10]
Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images.

Med Image Anal. 2023-4

引用本文的文献

[1]
Advancing vaccine-based immunotherapy in glioblastoma treatment.

Neurooncol Adv. 2025-6-24

[2]
Enhancing pancreatic cancer detection in CT images through secretary wolf bird optimization and deep learning.

Sci Rep. 2025-6-5

[3]
An explainable AI-driven deep neural network for accurate breast cancer detection from histopathological and ultrasound images.

Sci Rep. 2025-5-20

[4]
Exploring the complex nature of implementation of Artificial intelligence in clinical practice: an interview study with healthcare professionals, researchers and Policy and Governance Experts.

PLOS Digit Health. 2025-5-7

[5]
Enhanced brain image security using a hybrid of lifting wavelet transform and support vector machine.

Sci Rep. 2025-3-20

[6]
Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer.

Front Immunol. 2024-12-10

[7]
Distinctive roles of aquaporins and novel therapeutic opportunities against cancer.

RSC Med Chem. 2024-12-17

[8]
Pneumonia detection on chest X-rays from Xception-based transfer learning and logistic regression.

Technol Health Care. 2024

[9]
Breast Cancer Diagnosis Using Virtualization and Extreme Learning Algorithm Based on Deep Feed Forward Networks.

Biomed Eng Comput Biol. 2024-10-28

[10]
An Unsupervised Learning Tool for Plaque Tissue Characterization in Histopathological Images.

Sensors (Basel). 2024-8-20

本文引用的文献

[1]
A union of deep learning and swarm-based optimization for 3D human action recognition.

Sci Rep. 2022-3-31

[2]
A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation.

Diagnostics (Basel). 2021-10-30

[3]
A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification.

Sensors (Basel). 2021-8-18

[4]
Inhibition of triple negative breast cancer metastasis and invasiveness by novel drugs that target epithelial to mesenchymal transition.

Sci Rep. 2021-6-3

[5]
Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM.

Sensors (Basel). 2021-4-18

[6]
Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids.

Sci Rep. 2021-4-13

[7]
Deep learning-based tumor microenvironment analysis in colon adenocarcinoma histopathological whole-slide images.

Comput Methods Programs Biomed. 2021-6

[8]
A new method for synthesizing test accuracy data outperformed the bivariate method.

J Clin Epidemiol. 2021-4

[9]
Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients.

Cancers (Basel). 2020-10-12

[10]
PadChest: A large chest x-ray image dataset with multi-label annotated reports.

Med Image Anal. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索