Peng Yifei, Zheng Chao, Guo Shuang, Gao Fuquan, Wang Xiaxia, Du Zhenghua, Gao Feng, Su Feng, Zhang Wenjing, Yu Xueling, Liu Guoying, Liu Baoshun, Wu Chengjian, Sun Yun, Yang Zhenbiao, Hao Zhilong, Yu Xiaomin
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
NPJ Sci Food. 2023 Mar 16;7(1):7. doi: 10.1038/s41538-023-00187-1.
The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.
农产品的地理来源对其品质和市场价值有很大贡献。在此,我们开发了一种将代谢组学与机器学习(ML)相结合的强大方法,以鉴定武夷岩茶(一种优质乌龙茶)的地理来源。使用气相色谱 - 飞行时间质谱对333个茶叶样品(174个来自核心产区,159个来自非核心产区)的挥发性成分进行了分析,并测试了一系列ML算法。来自两个产区的武夷岩茶具有明显不同的香气特征。使用176个挥发性特征,多层感知器在训练数据上取得了最佳性能,平均准确率为92.7%。该模型在两个独立测试集上进行了基准测试,准确率超过90%。当仅使用30个挥发性特征时,梯度提升算法产生了最佳准确率(89.6%)。所提出的方法在识别其他有价值农产品的地理来源方面具有广阔的应用前景。