Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.
Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
Commun Biol. 2023 Mar 16;6(1):275. doi: 10.1038/s42003-023-04601-y.
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.
细菌对抗生素的耐药性是一个日益受到重视和深入研究的全球健康问题。尽管生物膜是临床环境中感染的常见来源,但对于生物膜内抗生素耐药性的发展知之甚少。在这里,我们使用实验进化来比较在暴露于临床相关致死性处理循环的浮游和生物膜大肠杆菌种群中选择耐药突变,这些处理涉及氨基糖苷类药物阿米卡星。一致地,编码内膜肽转运蛋白的 sbmA 和编码必需延伸因子 G 的 fusA 突变在生物膜中迅速选择,但在浮游细胞中则不然。这是由于突变率增加、粘附能力增强和保护性生物膜相关耐受的综合作用。这些结果表明,生物膜环境有利于耐药性的快速进化,并为生物膜中抗生素耐药性的动态进化提供了新的见解。