Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany.
Arch Toxicol. 2023 May;97(5):1413-1428. doi: 10.1007/s00204-023-03482-8. Epub 2023 Mar 16.
Pyrrolizidine alkaloids (PAs) occur as contaminants in plant-based foods and herbal medicines. Following metabolic activation by cytochrome P450 (CYP) enzymes, PAs induce DNA damage, hepatotoxicity and can cause liver cancer in rodents. There is ample evidence that the chemical structure of PAs determines their toxicity. However, more quantitative genotoxicity data are required, particularly in primary human hepatocytes (PHH). Here, the genotoxicity of eleven structurally different PAs was investigated in human HepG2 liver cells with CYP3A4 overexpression and PHH using an in vitro test battery. Furthermore, the data were subject to benchmark dose (BMD) modeling to derive the genotoxic potency of individual PAs. The cytotoxicity was initially determined in HepG2-CYP3A4 cells, revealing a clear structure-toxicity relationship for the PAs. Importantly, experiments in PHH confirmed the structure-dependent toxicity and cytotoxic potency ranking of the tested PAs. The genotoxicity markers γH2AX and p53 as well as the alkaline Comet assay consistently demonstrated a structure-dependent genotoxicity of PAs in HepG2-CYP3A4 cells, correlating well with their cytotoxic potency. BMD modeling yielded BMD values in the range of 0.1-10 µM for most cyclic and open diesters, followed by the monoesters. While retrorsine showed the highest genotoxic potency, monocrotaline and lycopsamine displayed the lowest genotoxicity. Finally, experiments in PHH corroborated the genotoxic potency ranking, and revealed genotoxic effects even in the absence of detectable cytotoxicity. In conclusion, our findings strongly support the concept of grouping PAs into potency classes and help to pave the way for a broader acceptance of relative potency factors in risk assessment.
吡咯里西啶生物碱(PAs)作为植物性食品和草药中的污染物而存在。在细胞色素 P450(CYP)酶的代谢激活后,PAs 会引起 DNA 损伤、肝毒性,并在啮齿动物中引发肝癌。有充分的证据表明 PAs 的化学结构决定了它们的毒性。然而,需要更多定量遗传毒性数据,特别是在原代人肝细胞(PHH)中。在此,使用体外测试电池研究了 11 种结构不同的 PAs 在人 HepG2 肝癌细胞中过表达 CYP3A4 和 PHH 的遗传毒性。此外,对数据进行了基准剂量(BMD)建模,以得出各 PAs 的遗传毒性效力。最初在 HepG2-CYP3A4 细胞中确定了细胞毒性,揭示了 PAs 的明显结构-毒性关系。重要的是,在 PHH 中的实验证实了所测试 PAs 的结构依赖性毒性和细胞毒性效力排序。遗传毒性标志物 γH2AX 和 p53 以及碱性彗星试验一致表明,PAs 在 HepG2-CYP3A4 细胞中具有结构依赖性遗传毒性,与它们的细胞毒性效力密切相关。BMD 建模得出了大多数环状和开环二酯以及单酯的 0.1-10µM 范围内的 BMD 值。虽然 retrorsine 显示出最高的遗传毒性效力,但是 monocrotaline 和 lycopsamine 显示出最低的遗传毒性。最后,在 PHH 中的实验证实了遗传毒性效力排序,并在没有可检测到的细胞毒性的情况下显示出遗传毒性作用。总之,我们的研究结果强烈支持将 PAs 分为效力类别这一概念,并有助于为在风险评估中更广泛地接受相对效力因素铺平道路。