Nobuhiro Ogihara Research Group, Frontier Research Management Office, Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan.
Fuel Cell Research-Domain, Emerging Electrification Technology Div., Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan.
Nat Commun. 2023 Mar 16;14(1):1472. doi: 10.1038/s41467-023-37120-9.
Intercalated metal-organic frameworks (iMOFs) based on aromatic dicarboxylate are appealing negative electrode active materials for Li-based electrochemical energy storage devices. They store Li ions at approximately 0.8 V vs. Li/Li and, thus, avoid Li metal plating during cell operation. However, their fast-charging capability is limited. Here, to circumvent this issue, we propose iMOFs with multi-aromatic units selected using machine learning and synthesized via solution spray drying. A naphthalene-based multivariate material with nanometric thickness allows the reversible storage of Li-ions in non-aqueous Li metal cell configuration reaching 85% capacity retention at 400 mA g (i.e., 30 min for full charge) and 20 °C compared to cycling at 20 mA g (i.e., 10 h for full charge). The same material, tested in combination with an activated carbon-based positive electrode, enables a discharge capacity retention of about 91% after 1000 cycles at 0.15 mA cm (i.e., 2 h for full charge) and 20 °C. We elucidate the charge storage mechanism and demonstrate that during Li intercalation, the distorted crystal structure promotes electron delocalization by controlling the frame vibration. As a result, a phase transition suppresses phase separation, thus, benefitting the electrode's fast charging behavior.
基于芳香二羧酸的插层金属有机骨架(iMOFs)是一种有吸引力的用于基于 Li 的电化学储能器件的负极活性材料。它们在大约 0.8 V vs. Li/Li 下存储 Li 离子,从而避免了电池运行过程中 Li 金属的电镀。然而,它们的快速充电能力有限。在这里,为了解决这个问题,我们提出了使用机器学习选择的多芳基单元的 iMOFs,并通过溶液喷雾干燥法合成。具有纳米级厚度的萘基多元材料允许在非水 Li 金属电池配置中可逆地存储 Li 离子,与在 20 mA g(即完全充电需要 10 小时)下循环相比,在 400 mA g(即完全充电需要 30 分钟)下达到 85%的容量保持率和 20°C。在 0.15 mA cm(即完全充电需要 2 小时)和 20°C 下,与基于活性炭的正极组合测试时,相同的材料在 1000 次循环后保持约 91%的放电容量。我们阐明了电荷存储机制,并证明在 Li 嵌入过程中,扭曲的晶体结构通过控制框架振动促进电子离域。结果,相转变抑制了相分离,从而有利于电极的快速充电行为。