Pei Yi, Chen Qing, Wang Meiyu, Zhang Pengjun, Ren Qingyong, Qin Jingkai, Xiao Penghao, Song Li, Chen Yu, Yin Wen, Tong Xin, Zhen Liang, Wang Peng, Xu Cheng-Yan
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures and Center for the Microstructures of Quantum Materials, Nanjing University, Nanjing, 210093, China.
Nat Commun. 2022 Oct 18;13(1):6158. doi: 10.1038/s41467-022-33927-0.
The limited capacity of the positive electrode active material in non-aqueous rechargeable lithium-based batteries acts as a stumbling block for developing high-energy storage devices. Although lithium transition metal oxides are high-capacity electrochemical active materials, the structural instability at high cell voltages (e.g., >4.3 V) detrimentally affects the battery performance. Here, to circumvent this issue, we propose a LiNiMnO (0 < x < 4) material capable of forming a medium-entropy state spinel phase with partial cation disordering after initial delithiation. Via physicochemical measurements and theoretical calculations, we demonstrate the structural disorder in delithiated LiNiMnO, the direct shuttling of Li ions from octahedral sites to the spinel structure and the charge-compensation Mn/Mn cationic redox mechanism after the initial delithiation. When tested in a coin cell configuration in combination with a Li metal anode and a LiPF-based non-aqueous electrolyte, the LiNiMnO-based positive electrode enables a discharge capacity of 314.1 mA h g at 100 mA g with an average cell discharge voltage of about 3.2 V at 25 ± 5 °C, which results in a calculated initial specific energy of 999.3 Wh kg (based on mass of positive electrode's active material).
非水可充电锂基电池中正极活性材料的有限容量成为了开发高能量存储设备的绊脚石。尽管锂过渡金属氧化物是高容量的电化学活性材料,但在高电池电压(例如,>4.3 V)下的结构不稳定性会对电池性能产生不利影响。在此,为了规避这个问题,我们提出了一种LiNiMnO(0 < x < 4)材料,该材料在初始脱锂后能够形成具有部分阳离子无序的中熵态尖晶石相。通过物理化学测量和理论计算,我们证明了脱锂LiNiMnO中的结构无序、锂离子从八面体位置直接穿梭到尖晶石结构以及初始脱锂后的电荷补偿Mn/Mn阳离子氧化还原机制。当与锂金属负极和基于LiPF的非水电解质一起以硬币电池配置进行测试时,基于LiNiMnO的正极在100 mA g下的放电容量为314.1 mA h g,在25±5°C下平均电池放电电压约为3.2 V,这导致计算出的初始比能量为999.3 Wh kg(基于正极活性材料的质量)。