Suppr超能文献

基于T2加权成像的前列腺分区分割模型的开发与临床效用分析:一项多中心研究

Development and clinical utility analysis of a prostate zonal segmentation model on T2-weighted imaging: a multicenter study.

作者信息

Xu Lili, Zhang Gumuyang, Zhang Daming, Zhang Jiahui, Zhang Xiaoxiao, Bai Xin, Chen Li, Peng Qianyu, Jin Ru, Mao Li, Li Xiuli, Jin Zhengyu, Sun Hao

机构信息

Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing, 100730, China.

National Center for Quality Control of Radiology, Beijing, China.

出版信息

Insights Imaging. 2023 Mar 16;14(1):44. doi: 10.1186/s13244-023-01394-w.

Abstract

OBJECTIVES

To automatically segment prostate central gland (CG) and peripheral zone (PZ) on T2-weighted imaging using deep learning and assess the model's clinical utility by comparing it with a radiologist annotation and analyzing relevant influencing factors, especially the prostate zonal volume.

METHODS

A 3D U-Net-based model was trained with 223 patients from one institution and tested using one internal testing group (n = 93) and two external testing datasets, including one public dataset (ETD, n = 141) and one private dataset from two centers (ETD, n = 59). The Dice similarity coefficients (DSCs), 95th Hausdorff distance (95HD), and average boundary distance (ABD) were calculated to evaluate the model's performance and further compared with a junior radiologist's performance in ETD. To investigate factors influencing the model performance, patients' clinical characteristics, prostate morphology, and image parameters in ETD were collected and analyzed using beta regression.

RESULTS

The DSCs in the internal testing group, ETD, and ETD were 0.909, 0.889, and 0.869 for CG, and 0.844, 0.755, and 0.764 for PZ, respectively. The mean 95HD and ABD were less than 7.0 and 1.3 for both zones. The U-Net model outperformed the junior radiologist, having a higher DSC (0.769 vs. 0.706) and higher intraclass correlation coefficient for volume estimation in PZ (0.836 vs. 0.668). CG volume and Magnetic Resonance (MR) vendor were significant influencing factors for CG and PZ segmentation.

CONCLUSIONS

The 3D U-Net model showed good performance for CG and PZ auto-segmentation in all the testing groups and outperformed the junior radiologist for PZ segmentation. The model performance was susceptible to prostate morphology and MR scanner parameters.

摘要

目的

利用深度学习在T2加权成像上自动分割前列腺中央腺体(CG)和外周带(PZ),并通过与放射科医生的标注进行比较以及分析相关影响因素,尤其是前列腺带区体积,来评估该模型的临床实用性。

方法

基于3D U-Net的模型使用来自一个机构的223例患者进行训练,并使用一个内部测试组(n = 93)和两个外部测试数据集进行测试,其中包括一个公共数据集(ETD,n = 141)和来自两个中心的一个私人数据集(ETD,n = 59)。计算Dice相似系数(DSC)、第95百分位豪斯多夫距离(95HD)和平均边界距离(ABD)以评估模型的性能,并在ETD中进一步与初级放射科医生的性能进行比较。为了研究影响模型性能的因素,收集了ETD中患者的临床特征、前列腺形态和图像参数,并使用β回归进行分析。

结果

内部测试组、ETD和ETD中CG的DSC分别为0.909、0.889和0.869,PZ的DSC分别为0.844、0.755和0.764。两个区域的平均95HD和ABD均小于7.0和1.3。U-Net模型优于初级放射科医生,在PZ体积估计方面具有更高的DSC(0.769对0.706)和更高的组内相关系数(0.836对0.668)。CG体积和磁共振(MR)供应商是CG和PZ分割的显著影响因素。

结论

3D U-Net模型在所有测试组中对CG和PZ自动分割均表现出良好性能,在PZ分割方面优于初级放射科医生。模型性能易受前列腺形态和MR扫描仪参数的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9574/10020392/315f4a38a4f1/13244_2023_1394_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验