Department of Electrical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China.
Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada.
Phys Med Biol. 2024 Aug 20;69(17). doi: 10.1088/1361-6560/ad6ace.
Automatic segmentation of prostatic zones from MRI can improve clinical diagnosis of prostate cancer as lesions in the peripheral zone (PZ) and central gland (CG) exhibit different characteristics. Existing approaches are limited in their accuracy in localizing the edges of PZ and CG. The proposed boundary-aware semantic clustering network (BASC-Net) improves segmentation performance by learning features in the vicinity of the prostate zonal boundaries, instead of only focusing on manually segmented boundaries.BASC-Net consists of two major components: the semantic clustering attention (SCA) module and the boundary-aware contrastive (BAC) loss. The SCA module implements a self-attention mechanism that extracts feature bases representing essential features of the inner body and boundary subregions and constructs attention maps highlighting each subregion. SCA is the first self-attention algorithm that utilizes ground truth masks to supervise the feature basis construction process. The features extracted from the inner body and boundary subregions of the same zone were integrated by BAC loss, which promotes the similarity of features extracted in the two subregions of the same zone. The BAC loss further promotes the difference between features extracted from different zones.BASC-Net was evaluated on the NCI-ISBI 2013 Challenge and Prostate158 datasets. An inter-dataset evaluation was conducted to evaluate the generalizability of the proposed method. BASC-Net outperformed nine state-of-the-art methods in all three experimental settings, attaining Dice similarity coefficients of 79.9% and 88.6% for PZ and CG, respectively, in the NCI-ISBI dataset, 80.5% and 89.2% for PZ and CG, respectively, in Prostate158 dataset, and 73.2% and 87.4% for PZ and CG, respectively, in the inter-dataset evaluation.As prostate lesions in PZ and CG have different characteristics, the zonal boundaries segmented by BASC-Net will facilitate prostate lesion detection.
从 MRI 自动分割前列腺区域可以改善前列腺癌的临床诊断,因为外周区(PZ)和中央腺体(CG)中的病变具有不同的特征。现有的方法在定位 PZ 和 CG 的边缘方面的准确性有限。所提出的边界感知语义聚类网络(BASC-Net)通过学习前列腺区域边界附近的特征来提高分割性能,而不是仅关注手动分割的边界。BASC-Net 由两个主要部分组成:语义聚类注意力(SCA)模块和边界感知对比(BAC)损失。SCA 模块实现了一种自注意力机制,该机制提取表示内部体和边界子区域基本特征的特征基,并构建突出每个子区域的注意力图。SCA 是第一个利用真实掩码来监督特征基构建过程的自注意力算法。来自同一区域的内部体和边界子区域的特征通过 BAC 损失进行整合,这促进了同一区域的两个子区域提取的特征的相似性。BAC 损失进一步促进了来自不同区域的特征之间的差异。BASC-Net 在 NCI-ISBI 2013 挑战赛和 Prostate158 数据集上进行了评估。进行了跨数据集评估,以评估所提出方法的泛化能力。BASC-Net 在所有三种实验设置中均优于九种最先进的方法,在 NCI-ISBI 数据集的 PZ 和 CG 中分别获得了 79.9%和 88.6%的 Dice 相似系数,在 Prostate158 数据集的 PZ 和 CG 中分别获得了 80.5%和 89.2%的 Dice 相似系数,在跨数据集评估中,PZ 和 CG 的 Dice 相似系数分别为 73.2%和 87.4%。由于 PZ 和 CG 中的前列腺病变具有不同的特征,因此 BASC-Net 分割的区域边界将有助于前列腺病变的检测。