Suppr超能文献

多组学数据反卷积与整合:新方法、见解及转化意义

Multi-omics Data Deconvolution and Integration: New Methods, Insights, and Translational Implications.

作者信息

Wang Xuefeng, Fridley Brooke L

机构信息

Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

出版信息

Methods Mol Biol. 2023;2629:1-9. doi: 10.1007/978-1-0716-2986-4_1.

Abstract

In the current era of multi-omics, new sequencing and molecular profiling technologies have facilitated our quest for a deeper and broader understanding of the variations and dynamic regulations in human genomes. However, analyzing and integrating data generated from diverse platforms, modalities, and large-scale heterogeneous samples to extract functional and clinically valuable information remains a significant challenge. Here, we first discuss recent advances in methods and algorithms for analyzing data at the genome, transcriptome, proteome, metabolome, and microbiome levels, followed by emerging methods for leveraging single-cell sequencing and spatial transcriptomic data. We also highlight the mechanistic insights that these advances can bring to the field, as well as the current challenges and outlooks relating to their translational and reproducible adoption at the population level. It is evident that novel statistical methods, which were inspired by new assays, will enable the associated molecular profiling pipelines and experimental designs to continuously improve our understanding of the human genome and the downstream consequences in the transcriptome, epigenome, proteome, metabolome, regulome, and microbiome.

摘要

在当前的多组学时代,新的测序和分子谱分析技术推动我们更深入、更广泛地了解人类基因组中的变异和动态调控。然而,分析和整合来自不同平台、模式以及大规模异质样本的数据,以提取功能和临床有价值的信息,仍然是一项重大挑战。在此,我们首先讨论在基因组、转录组、蛋白质组、代谢组和微生物组水平分析数据的方法和算法的最新进展,接着介绍利用单细胞测序和空间转录组数据的新兴方法。我们还强调这些进展可为该领域带来的机制性见解,以及在群体水平上与它们的转化应用和可重复采用相关的当前挑战和前景。显然,受新检测方法启发的新型统计方法,将使相关的分子谱分析流程和实验设计能够不断提升我们对人类基因组以及转录组、表观基因组、蛋白质组、代谢组、调控组和微生物组中的下游结果的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验