Suppr超能文献

弥漫性大 B 细胞淋巴瘤中肿瘤细胞状态和生态系统的景观。

The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma.

机构信息

Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.

Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA.

出版信息

Cancer Cell. 2021 Oct 11;39(10):1422-1437.e10. doi: 10.1016/j.ccell.2021.08.011. Epub 2021 Sep 30.

Abstract

Biological heterogeneity in diffuse large B cell lymphoma (DLBCL) is partly driven by cell-of-origin subtypes and associated genomic lesions, but also by diverse cell types and cell states in the tumor microenvironment (TME). However, dissecting these cell states and their clinical relevance at scale remains challenging. Here, we implemented EcoTyper, a machine-learning framework integrating transcriptome deconvolution and single-cell RNA sequencing, to characterize clinically relevant DLBCL cell states and ecosystems. Using this approach, we identified five cell states of malignant B cells that vary in prognostic associations and differentiation status. We also identified striking variation in cell states for 12 other lineages comprising the TME and forming cell state interactions in stereotyped ecosystems. While cell-of-origin subtypes have distinct TME composition, DLBCL ecosystems capture clinical heterogeneity within existing subtypes and extend beyond cell-of-origin and genotypic classes. These results resolve the DLBCL microenvironment at systems-level resolution and identify opportunities for therapeutic targeting (https://ecotyper.stanford.edu/lymphoma).

摘要

弥漫性大 B 细胞淋巴瘤 (DLBCL) 的生物学异质性部分由细胞起源亚型和相关的基因组病变驱动,但也由肿瘤微环境 (TME) 中的多种细胞类型和细胞状态驱动。然而,在大规模上解析这些细胞状态及其临床相关性仍然具有挑战性。在这里,我们实施了 EcoTyper,这是一个集成转录组去卷积和单细胞 RNA 测序的机器学习框架,用于表征临床上相关的 DLBCL 细胞状态和生态系统。使用这种方法,我们确定了五种恶性 B 细胞状态,它们在预后相关性和分化状态上存在差异。我们还发现,构成 TME 的 12 种其他谱系的细胞状态存在显著差异,并在定型的生态系统中形成细胞状态相互作用。虽然细胞起源亚型具有独特的 TME 组成,但 DLBCL 生态系统可以捕捉到现有亚型内的临床异质性,并超越细胞起源和基因型类别。这些结果以系统水平分辨率解析了 DLBCL 微环境,并为治疗靶向提供了机会 (https://ecotyper.stanford.edu/lymphoma)。

相似文献

1
The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma.
Cancer Cell. 2021 Oct 11;39(10):1422-1437.e10. doi: 10.1016/j.ccell.2021.08.011. Epub 2021 Sep 30.
2
Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-tumour interfaces.
EBioMedicine. 2020 Nov;61:103055. doi: 10.1016/j.ebiom.2020.103055. Epub 2020 Oct 20.

引用本文的文献

2
Reprogramming RIPK3-induced cell death in malignant B cells promotes immune-mediated tumor control.
Sci Adv. 2025 Aug 15;11(33):eadv0871. doi: 10.1126/sciadv.adv0871.
3
Pareto task inference analysis reveals cellular trade-offs in diffuse large B-Cell lymphoma transcriptomic data.
Front Syst Biol. 2024 Mar 1;4:1346076. doi: 10.3389/fsysb.2024.1346076. eCollection 2024.
5
Lymphoid stroma in all its states.
Front Immunol. 2025 Jul 16;16:1633235. doi: 10.3389/fimmu.2025.1633235. eCollection 2025.
6
Leveraging immunologically based therapies to treat diffuse large B-cell lymphoma.
Trends Cancer. 2025 Jul 23. doi: 10.1016/j.trecan.2025.06.013.
7
Molecular pathology of lymphoma and its treatment strategies: from mechanistic elucidation to precision medicine.
Front Immunol. 2025 Jul 9;16:1620895. doi: 10.3389/fimmu.2025.1620895. eCollection 2025.
8
A predictive model based on immune related genes for diffuse large B cell lymphoma (DLBCL).
Transl Cancer Res. 2025 Jun 30;14(6):3611-3626. doi: 10.21037/tcr-24-2043. Epub 2025 Jun 23.
9
A novel subtyping method for TNBC with implications for prognosis and therapy.
bioRxiv. 2025 Jul 8:2025.07.04.663242. doi: 10.1101/2025.07.04.663242.

本文引用的文献

1
Atlas of clinically distinct cell states and ecosystems across human solid tumors.
Cell. 2021 Oct 14;184(21):5482-5496.e28. doi: 10.1016/j.cell.2021.09.014. Epub 2021 Sep 30.
3
Clinical and Biological Subtypes of B-cell Lymphoma Revealed by Microenvironmental Signatures.
Cancer Discov. 2021 Jun;11(6):1468-1489. doi: 10.1158/2159-8290.CD-20-0839. Epub 2021 Feb 4.
4
Mapping the immune environment in clear cell renal carcinoma by single-cell genomics.
Commun Biol. 2021 Jan 27;4(1):122. doi: 10.1038/s42003-020-01625-6.
5
The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs.
Blood. 2020 Nov 12;136(20):2263-2274. doi: 10.1182/blood.2020005857.
7
Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels.
Nat Cell Biol. 2020 Jul;22(7):896-906. doi: 10.1038/s41556-020-0532-x. Epub 2020 Jun 15.
8
Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer.
Nat Genet. 2020 Jun;52(6):594-603. doi: 10.1038/s41588-020-0636-z. Epub 2020 May 25.
10
Integrating genomic features for non-invasive early lung cancer detection.
Nature. 2020 Apr;580(7802):245-251. doi: 10.1038/s41586-020-2140-0. Epub 2020 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验