Suppr超能文献

弥漫性大 B 细胞淋巴瘤中肿瘤细胞状态和生态系统的景观。

The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma.

机构信息

Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.

Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA 94305, USA.

出版信息

Cancer Cell. 2021 Oct 11;39(10):1422-1437.e10. doi: 10.1016/j.ccell.2021.08.011. Epub 2021 Sep 30.

Abstract

Biological heterogeneity in diffuse large B cell lymphoma (DLBCL) is partly driven by cell-of-origin subtypes and associated genomic lesions, but also by diverse cell types and cell states in the tumor microenvironment (TME). However, dissecting these cell states and their clinical relevance at scale remains challenging. Here, we implemented EcoTyper, a machine-learning framework integrating transcriptome deconvolution and single-cell RNA sequencing, to characterize clinically relevant DLBCL cell states and ecosystems. Using this approach, we identified five cell states of malignant B cells that vary in prognostic associations and differentiation status. We also identified striking variation in cell states for 12 other lineages comprising the TME and forming cell state interactions in stereotyped ecosystems. While cell-of-origin subtypes have distinct TME composition, DLBCL ecosystems capture clinical heterogeneity within existing subtypes and extend beyond cell-of-origin and genotypic classes. These results resolve the DLBCL microenvironment at systems-level resolution and identify opportunities for therapeutic targeting (https://ecotyper.stanford.edu/lymphoma).

摘要

弥漫性大 B 细胞淋巴瘤 (DLBCL) 的生物学异质性部分由细胞起源亚型和相关的基因组病变驱动,但也由肿瘤微环境 (TME) 中的多种细胞类型和细胞状态驱动。然而,在大规模上解析这些细胞状态及其临床相关性仍然具有挑战性。在这里,我们实施了 EcoTyper,这是一个集成转录组去卷积和单细胞 RNA 测序的机器学习框架,用于表征临床上相关的 DLBCL 细胞状态和生态系统。使用这种方法,我们确定了五种恶性 B 细胞状态,它们在预后相关性和分化状态上存在差异。我们还发现,构成 TME 的 12 种其他谱系的细胞状态存在显著差异,并在定型的生态系统中形成细胞状态相互作用。虽然细胞起源亚型具有独特的 TME 组成,但 DLBCL 生态系统可以捕捉到现有亚型内的临床异质性,并超越细胞起源和基因型类别。这些结果以系统水平分辨率解析了 DLBCL 微环境,并为治疗靶向提供了机会 (https://ecotyper.stanford.edu/lymphoma)。

相似文献

引用本文的文献

5
Lymphoid stroma in all its states.处于所有状态的淋巴样基质。
Front Immunol. 2025 Jul 16;16:1633235. doi: 10.3389/fimmu.2025.1633235. eCollection 2025.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验