Suppr超能文献

利用蛋白质和代谢工程开发生产β-丙氨酸的益生菌大肠杆菌 Nissle 1917。

Development of probiotic E. coli Nissle 1917 for β-alanine production by using protein and metabolic engineering.

机构信息

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.

Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.

出版信息

Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2277-2288. doi: 10.1007/s00253-023-12477-5. Epub 2023 Mar 16.

Abstract

β-alanine has been used in food and pharmaceutical industries. Although Escherichia coli Nissle 1917 (EcN) is generally considered safe and engineered as living therapeutics, engineering EcN for producing industrial metabolites has rarely been explored. Here, by protein and metabolic engineering, EcN was engineered for producing β-alanine from glucose. First, an aspartate-α-decarboxylase variant ADC with improved activity was identified and over-expressed in EcN, promoting the titer of β-alanine from an undetectable level to 0.46 g/L. Second, directing the metabolic flux towards L-aspartate increased the titer of β-alanine to 0.92 g/L. Third, the yield of β-alanine was elevated to 1.19 g/L by blocking conversion of phosphoenolpyruvate to pyruvate, and further increased to 2.14 g/L through optimizing culture medium. Finally, the engineered EcN produced 11.9 g/L β-alanine in fed-batch fermentation. Our work not only shows the potential of EcN as a valuable industrial platform, but also facilitates production of β-alanine via fermentation. KEY POINTS: • Escherichia coli Nissle 1917 (EcN) was engineered as a β-alanine producing cell factory • Identification of a decarboxylase variant ADC with improved activity • Directing the metabolic flux to L-ASP and expressing ADC elevated the titer of β-alanine to 11.9 g/L.

摘要

β-丙氨酸已被广泛应用于食品和制药行业。尽管大肠杆菌 Nissle 1917(EcN)通常被认为是安全的,并被设计为活的治疗药物,但将 EcN 工程化为生产工业代谢物的情况却很少被探索。在这里,通过蛋白质和代谢工程,我们将 EcN 工程化为能够从葡萄糖生产β-丙氨酸。首先,我们鉴定并在 EcN 中过表达了一种具有更高活性的天冬氨酸-α-脱羧酶变体 ADC,从而使β-丙氨酸的产量从无法检测的水平提高到 0.46 g/L。其次,通过将代谢通量导向 L-天冬氨酸,β-丙氨酸的产量提高到 0.92 g/L。第三,通过阻断磷酸烯醇丙酮酸转化为丙酮酸,将β-丙氨酸的产率提高到 1.19 g/L,并通过优化培养基进一步提高到 2.14 g/L。最后,经过补料分批发酵,工程 EcN 生产了 11.9 g/L 的β-丙氨酸。我们的工作不仅展示了 EcN 作为一种有价值的工业平台的潜力,而且还促进了通过发酵生产β-丙氨酸。关键点:• 大肠杆菌 Nissle 1917(EcN)被工程化为β-丙氨酸生产细胞工厂• 鉴定出一种具有更高活性的脱羧酶变体 ADC• 将代谢通量导向 L-ASP 并表达 ADC 将β-丙氨酸的产量提高到 11.9 g/L。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验