Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
Center of Joining and Electronic Packing, State Key Laboratory of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Small. 2023 Jun;19(25):e2207950. doi: 10.1002/smll.202207950. Epub 2023 Mar 17.
Lead halide-based perovskites solar cells (PSCs) are intriguing candidates for photovoltaic technology due to their high efficiency, low cost, and simple fabrication processes. Currently, PSCs with efficiencies of >25% are mainly based on methylammonium (MA)-free and bromide (Br) free, formamide lead iodide (FAPbI )-based perovskites, because MA is thermally unstable due to its volatile nature and Br incorporation will induce blue shift in the absorption spectrum. Therefore, MA-free, Br-free formamidine-based perovskites are drawing huge research attention in recent years. The hole transporting layer (HTL) is crucial in fabricating highly efficient and stable inverted p-i-n structured PSCs by enhancing charge extraction, lowering interfacial recombination, and altering band alignment, etc. Here, this work employs a NiO /PTAA bi-layer HTL combined with GuHCl (guanidinium hydrochloride) additive engineering and PEAI (phenylethylammonium iodide) passivation strategy to optimize the charge carrier dynamics and tune defects chemistry in the MA-free, Br-free RbCsFAPbI -based perovskite absorber, which boosts the device efficiency up to 22.78%. Additionally, the device retains 95% of its initial performance under continuous 1 sun equivalent LED light illumination at 45 °C for up to 500 h.
基于卤化铅的钙钛矿太阳能电池(PSCs)因其高效率、低成本和简单的制造工艺而成为光伏技术的热门候选材料。目前,效率超过 25%的 PSCs 主要基于无甲脒(MA)和无溴(Br)、甲脒基(FA)铅碘(FAPbI )基钙钛矿,因为 MA 由于其挥发性而热不稳定,而 Br 的掺入会导致吸收光谱蓝移。因此,近年来,无 MA、无 Br 的甲脒基钙钛矿引起了人们的极大研究关注。空穴传输层(HTL)在通过增强电荷提取、降低界面复合和改变能带排列等方式来制备高效稳定的倒置 p-i-n 结构 PSCs 方面至关重要。在这里,这项工作采用 NiO/PTAA 双层 HTL 结合 GuHCl(盐酸胍)添加剂工程和 PEAI(苯乙基碘化铵)钝化策略,优化了无 MA、无 Br 的 RbCsFAPbI 基钙钛矿吸收体中的载流子动力学,并调整了缺陷化学,从而将器件效率提高到 22.78%。此外,该器件在 45°C 下,连续 1 个太阳等效 LED 光照下,持续 500 小时后,仍保留初始性能的 95%。