Suppr超能文献

南加州(2001-2021 年)年度生物量空间数据:地上和地下部分、立枯木和凋落物。

Annual biomass spatial data for southern California (2001-2021): Above- and belowground, standing dead, and litter.

机构信息

RedCastle Resources, Inc., Contractor to: USDA Forest Service Western Wildlands Environmental Threat Assessment Center (WWETAC), Salt Lake City, Utah, USA.

Department of Environmental Science and Policy, University of California, Davis, California, USA.

出版信息

Ecology. 2023 May;104(5):e4031. doi: 10.1002/ecy.4031. Epub 2023 Apr 5.

Abstract

Biomass estimates for shrub-dominated ecosystems in southern California have been generated at national and statewide extents. However, existing data tend to underestimate biomass in shrub vegetation types are limited to one point in time, or estimate aboveground live biomass only. In this study, we extended our previously developed estimates of aboveground live biomass (AGLBM) based on the empirical relationship of plot-based field biomass measurements to Landsat normalized difference vegetation index (NDVI) and multiple environmental factors to include other vegetative pools of biomass. AGLBM estimates were made by extracting plot values from elevation, solar radiation, aspect, slope, soil type, landform, climatic water deficit, evapotranspiration, and precipitation rasters and then using a random forest model to estimate per-pixel AGLBM across our southern California study area. By substituting year-specific Landsat NDVI and precipitation data, we created a stack of annual AGLBM raster layers for each year from 2001 to 2021. Using these AGLBM data as a foundation, we developed decision rules to estimate belowground, standing dead, and litter biomass pools. These rules were based on relationships between AGLBM and the biomass of the other vegetative pools derived primarily from peer-reviewed literature and an existing spatial data set. For shrub vegetation types (our primary focus), rules were based on literature estimates by the postfire regeneration strategy of each species (obligate seeder, facultative seeder, obligate resprouter). Similarly, for nonshrub vegetation types (grasslands, woodlands) we used literature and existing spatial data sets specific to each vegetation type to define rules to estimate the other pools from AGLBM. Using a Python language script that accessed Environmental Systems Research Institute raster geographic information system utilities, we applied decision rules to create raster layers for each of the non-AGLBM pools for the years 2001-2021. The resulting spatial data archive contains a zipped file for each year; each of these files contains four 32-bit tiff files for each of the four biomass pools (AGLBM, standing dead, litter, and belowground). The biomass units are grams per square meter (g/m ). We estimated the uncertainty of our biomass data by conducting a Monte Carlo analysis of the inputs used to generate the data. Our Monte Carlo technique used randomly generated values for each of the literature-based and spatial inputs based on their expected distribution. We conducted 200 Monte Carlo iterations, which produced percentage uncertainty values for each of the biomass pools. Results showed, using 2010 as an example, mean biomass for the study area and percentage uncertainty for each of the pools as follows: AGLBM (905.4 g/m , 14.4%); standing dead (644.9 g/m , 1.3%); litter (731.2 g/m , 1.2%); and belowground (776.2 g/m , 17.2%). Because our methods are consistently applied across each year, the data produced can be used to inform changes in biomass pools due to disturbance and subsequent recovery. As such, these data provide an important contribution to supporting the management of shrub-dominated ecosystems for monitoring trends in carbon storage and assessing the impacts of wildfire and management activities, such as fuel management and restoration. There are no copyright restrictions on the data set; please cite this paper and the data package when using these data.

摘要

已在国家和全州范围内生成南加州灌木主导生态系统的生物量估计值。然而,现有的数据往往低估了灌木植被类型的生物量,这些数据仅局限于一个时间点,或者仅估计地上活体生物量。在这项研究中,我们扩展了之前基于实地生物量测量的经验关系对基于斑块的地上活体生物量(AGLBM)的估计,以包括 Landsat 归一化差异植被指数(NDVI)和多个环境因素,以包括其他生物量池。通过从海拔、太阳辐射、方位、坡度、土壤类型、地貌、气候水分亏缺、蒸散量和降水栅格中提取斑块值,然后使用随机森林模型来估计我们南加州研究区域内每个像素的 AGLBM,从而对 AGLBM 进行估计。通过替换特定年份的 Landsat NDVI 和降水数据,我们为 2001 年至 2021 年的每个年份创建了年度 AGLBM 栅格层的堆栈。我们使用这些 AGLBM 数据作为基础,开发了决策规则来估计地下、立枯和凋落物生物量池。这些规则基于 AGLBM 与其他生物量池的生物质之间的关系,这些生物量池主要来自同行评议的文献和现有的空间数据集。对于灌木植被类型(我们的主要关注点),规则基于每个物种(强制性播种者、选择性播种者、强制性再生者)的火灾后再生策略的文献估计。同样,对于非灌木植被类型(草原、林地),我们使用特定于每种植被类型的文献和现有空间数据集来定义规则,以从 AGLBM 估计其他池。使用访问环境系统研究所栅格地理信息系统实用程序的 Python 语言脚本,我们应用决策规则为 2001-2021 年的每个非 AGLBM 池创建栅格层。生成的空间数据档案包含每个年份的压缩文件;每个文件包含四个 32 位 tiff 文件,用于四个生物量池(AGLBM、立枯、凋落物和地下)。生物量单位为克/平方米(g/m )。我们通过对生成数据使用的输入进行蒙特卡罗分析来估计我们的生物质数据的不确定性。我们的蒙特卡罗技术使用基于其预期分布的随机生成值来为每个基于文献和空间的输入生成值。我们进行了 200 次蒙特卡罗迭代,为每个生物质池生成了百分比不确定性值。结果表明,以 2010 年为例,研究区域的平均生物量和每个池的百分比不确定性如下:AGLBM(905.4 g/m ,14.4%);立枯(644.9 g/m ,1.3%);凋落物(731.2 g/m ,1.2%);地下(776.2 g/m ,17.2%)。由于我们的方法在每年都一致应用,因此生成的数据可用于了解由于干扰和随后的恢复而导致的生物量池的变化。因此,这些数据为支持以灌木为主导的生态系统的管理提供了重要贡献,以监测碳储存的趋势,并评估野火和管理活动(如燃料管理和恢复)的影响。数据集没有版权限制;在使用这些数据时,请引用本文和数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验