Suppr超能文献

高分子/石墨烯杂化材料实现室温铁磁性。

Ho-Ion-Polymer/Graphene Heterojunctions Toward Room-Temperature Ferromagnets.

机构信息

State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.

State Key Laboratory for New Textile Materials & Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Sunshine Avenue 1, Wuhan, 430200, P. R. China.

出版信息

Small. 2023 Jun;19(25):e2300385. doi: 10.1002/smll.202300385. Epub 2023 Mar 16.

Abstract

Organic ferromagnetic materials offer great promise for spintronic devices, carbon-based chips, and quantum communications, but remain as a challenging issue due to their low saturation magnetization and/or unsustainable ferromagnetic properties. To date, magnetic ion polymers have displayed paramagnetism without exception at room-temperature. In this study, it is reported for the first time that, owing to the structural restriction and charge exchange of Ho ion by polymer/graphene π-π stacking heterojunctions, holmium ion polymer composites exhibited typical hysteresis lines of ferromagnetic materials at room temperature. The room-temperature ferromagnetic ion polymer composite presented the highest saturation magnetization value of 3.36 emu g and unprecedented sustainable ferromagnetism, compared to reported room-temperature organic ferromagnetic materials. Accordingly, prepared ferromagnetic composites also achieved impressive wave absorption properties, with a maximum reflection loss of as much as -57.32 dB and a broad absorption bandwidth of 5.05 GHz. These findings may promote the development of room-temperature organic ferromagnetic materials.

摘要

有机铁磁材料在自旋电子器件、基于碳的芯片和量子通信方面具有很大的应用前景,但由于其低饱和磁化强度和/或不可持续的铁磁性能,仍然是一个具有挑战性的问题。迄今为止,室温下的磁性离子聚合物无一例外地表现出顺磁性。在这项研究中,首次报道了由于 Ho 离子与聚合物/石墨烯 π-π 堆积异质结的结构限制和电荷交换,钬离子聚合物复合材料在室温下表现出典型的铁磁材料磁滞回线。与报道的室温有机铁磁材料相比,室温铁磁离子聚合物复合材料表现出最高的饱和磁化强度值 3.36 emu g 和前所未有的可持续铁磁性。因此,所制备的铁磁复合材料还具有令人印象深刻的吸波性能,最大反射损耗高达-57.32 dB,吸收带宽为 5.05 GHz。这些发现可能会促进室温有机铁磁材料的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验