Suppr超能文献

用于超快内存运算的逻辑纳米层状 HfO-ZrO 中的可切换极性纳米织构

Switchable Polar Nanotexture in Nanolaminates HfO -ZrO for Ultrafast Logic-in-Memory Operations.

机构信息

Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea.

Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea.

出版信息

Small. 2023 Jun;19(25):e2206736. doi: 10.1002/smll.202206736. Epub 2023 Mar 17.

Abstract

Nontrivial topological polar textures in ferroelectric materials, including vortices, skyrmions, and others, have the potential to develop ultrafast, high-density, reliable multilevel memory storage and conceptually innovative processing units, even beyond the limit of binary storage of 180° aligned polar materials. However, the realization of switchable polar textures at room temperature in ferroelectric materials integrated directly into silicon using a straightforward large area fabrication technique and effectively utilizing it to design multilevel programable memory and processing units has not yet been demonstrated. Here, utilizing vector piezoresponse force and conductive atomic force microscopy, microscopic evidence of the electric field switchable polar nanotexture is provided at room temperature in HfO -ZrO nanolaminates grown directly onto silicon using an atomic layer deposition technique. Additionally, a two-terminal Au/nanolaminates/Si ferroelectric tunnel junction is designed, which shows ultrafast (≈83 ns) nonvolatile multilevel current switching with high on/off ratio (>10 ), long-term durability (>4000 s), and giant tunnel electroresistance (10 %). Furthermore, 14 Boolean logic operations are tested utilizing a single device as a proof-of-concept for reconfigurable logic-in-memory processing. The results offer a potential approach to "processing with polar textures" and addressing the challenges of developing high-performance multilevel in-memory processing technology by virtue of its fundamentally distinct mechanism of operation.

摘要

铁电材料中非平凡的拓扑极性纹理,包括涡旋、斯格明子等,有可能开发出超快、高密度、可靠的多级存储和具有创新性的概念处理单元,甚至超越了 180°排列的极性材料的二进制存储极限。然而,在利用简单的大面积制造技术直接集成在硅上的铁电材料中,在室温下实现可切换的极性纹理,以及有效地利用它来设计多级可编程存储和处理单元,尚未得到证明。在这里,利用矢量压电力和导电原子力显微镜,在室温下直接在硅上用原子层沉积技术生长的 HfO-ZrO 纳米层中提供了电场所可切换的极性纳米纹理的微观证据。此外,设计了一个两端的 Au/纳米层/Si 铁电隧道结,它显示出超快(≈83ns)非易失性多级电流开关,具有高导通/关断比(>10 )、长耐久性(>4000s)和巨大的隧道电电阻(10 )。此外,利用单个器件进行了 14 个布尔逻辑操作测试,作为可重构存储内逻辑处理的概念验证。该结果提供了一种“利用极性纹理进行处理”的潜在方法,并通过其操作机制的根本区别,解决了开发高性能多级存储内处理技术的挑战。

相似文献

3
Engineering of Ferroelectric HfO-ZrO Nanolaminates.铁电 HfO-ZrO 纳米层的工程设计。
ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13440-13447. doi: 10.1021/acsami.7b00776. Epub 2017 Apr 5.
10
Ferroelectric domain-wall logic units.铁电畴壁逻辑单元。
Nat Commun. 2022 Jun 6;13(1):3255. doi: 10.1038/s41467-022-30983-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验