Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
Airbus Defence and Space GmbH, Claude-Dornier-Strasse, 88090 Immenstaad, Germany.
Sci Adv. 2023 Mar 15;9(11):eadd6947. doi: 10.1126/sciadv.add6947. Epub 2023 Mar 17.
Future space travel needs ultra-lightweight and robust structural materials that can withstand extreme conditions with multiple entry points to orbit to ensure mission reliability. This is unattainable with current inorganic materials. Ultra-highly stable carbon fiber reinforced polymers (CFRPs) have shown susceptibility to environmental instabilities and electrostatic discharge, thereby limiting the full lightweight potential of CFRP. A more robust and improved CFRP is needed in order to improve space travel and structural engineering further. Here, we address these challenges and present a superlattice nano-barrier-enhanced CFRP with a density of ~3.18 g/cm that blends within the mechanical properties of the CFRP, thus becoming part of the composite itself. We demonstrate composites with enhanced radiation resistance coupled with electrical conductivity (3.2 × 10 ohm⋅m), while ensuring ultra-dimensionally stable physical properties even after temperature cycles from 77 to 573 K.
未来的太空旅行需要超轻和坚固的结构材料,这些材料能够承受极端条件和多个进入轨道的入口,以确保任务的可靠性。这是目前的无机材料所无法实现的。超高稳定碳纤维增强聚合物(CFRP)已显示出对环境不稳定性和静电放电的敏感性,从而限制了 CFRP 的全轻量潜力。需要一种更坚固和改进的 CFRP 来进一步提高太空旅行和结构工程的水平。在这里,我们解决了这些挑战,并提出了一种超晶格纳米障碍增强 CFRP,其密度约为 3.18 g/cm,与 CFRP 的机械性能相融合,从而成为复合材料本身的一部分。我们展示了具有增强抗辐射能力和导电性(3.2×10 欧姆·米)的复合材料,同时确保即使在 77 至 573 K 的温度循环后,也具有超尺寸稳定的物理性能。