Qi Jun, Zeng Huiyan, Gu Long, Liu Zhongfei, Zeng Yanquan, Hong Enna, Lai Yuecheng, Liu Tianhui, Yang Chunzhen
School of Materials, Sun Yat-Sen University, Shenzhen 518107, P. R. China.
Synchrotron Radiation Facility Division, Institute of Advanced Science Facilities (IASF), Shenzhen 518108, P. R. China.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15269-15278. doi: 10.1021/acsami.2c20131. Epub 2023 Mar 17.
Even the most stable Ir-based oxides inevitably encounter a severe degradation problem during the oxygen evolution reaction (OER) in acid, resulting in quick formation of amorphous IrO layers on the catalyst surface. Unfortunately, there is still a lack of fundamental understanding of such hydrous IrO layers, including the atomic arrangement, key active structure, compositions, chemical stability, and so on. In this work, we demonstrate an electrochemical strategy to prepare two types of protonated iridium oxides with well-defined crystalline structures: one possesses a 2D layered structure (denoted as α-HIrO) and the other consists of 3D interconnected polymorphs (denoted as β-HIrO). Both protonated iridium oxides demonstrate superior electrochemical stabilities with 6 times suppressed Ir dissolution comparing to the initial LiIrO and rutile IrO. It is hypothesized that the enriched protons and fast diffusions in these two protonated HIrO crystal oxides may promote surface structural stability by suppressing the formation of high-valence Ir species at the solid-liquid interfaces during OER. Overall, the results of this work shed light on the role of proton dynamics toward the OER processes on the catalyst surface in acid media.
即使是最稳定的铱基氧化物,在酸性环境中的析氧反应(OER)过程中也不可避免地会遇到严重的降解问题,导致催化剂表面迅速形成非晶态的氧化铱层。不幸的是,目前对于这种含水氧化铱层仍缺乏基本的了解,包括原子排列、关键活性结构、组成、化学稳定性等方面。在这项工作中,我们展示了一种电化学策略来制备两种具有明确晶体结构的质子化铱氧化物:一种具有二维层状结构(表示为α-HIrO),另一种由三维相互连接的多晶型物组成(表示为β-HIrO)。与初始的LiIrO和金红石型IrO相比,这两种质子化铱氧化物均表现出卓越的电化学稳定性,Ir溶解抑制了6倍。据推测,这两种质子化的HIrO晶体氧化物中富集的质子和快速扩散可能通过抑制OER过程中固液界面处高价铱物种的形成来促进表面结构稳定性。总体而言,这项工作的结果揭示了质子动力学在酸性介质中催化剂表面OER过程中的作用。