Kost Melisande, Kornherr Matthias, Zehetmaier Peter, Illner Hannah, Jeon Djung Sue, Gasteiger Hubert, Döblinger Markus, Fattakhova-Rohlfing Dina, Bein Thomas
Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (E), 81377, Munich, Germany.
Department of Chemistry, Catalysis Research Center and Chair of Technical Electrochemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
Small. 2024 Oct;20(42):e2404118. doi: 10.1002/smll.202404118. Epub 2024 Aug 21.
Significantly reducing the iridium content in oxygen evolution reaction (OER) catalysts while maintaining high electrocatalytic activity and stability is a key priority in the development of large-scale proton exchange membrane (PEM) electrolyzers. In practical catalysts, this is usually achieved by depositing thin layers of iridium oxide on a dimensionally stable metal oxide support material that reduces the volumetric packing density of iridium in the electrode assembly. By comparing two support materials with different structure types, it is shown that the chemical nature of the metal oxide support can have a strong influence on the crystallization of the iridium oxide phase and the direction of crystal growth. Epitaxial growth of crystalline IrO is achieved on the isostructural support material SnO, both of which have a rutile structure with very similar lattice constants. Crystallization of amorphous IrO on an SnO substrate results in interconnected, ultrasmall IrO crystallites that grow along the surface and are firmly anchored to the substrate. Thereby, the IrO phase enables excellent conductivity and remarkable stability of the catalyst at higher overpotentials and current densities at a very low Ir content of only 14 at%. The chemical epitaxy described here opens new horizons for the optimization of conductivity, activity and stability of electrocatalysts and the development of other epitaxial materials systems.
在大规模质子交换膜(PEM)电解槽的发展中,在保持高电催化活性和稳定性的同时大幅降低析氧反应(OER)催化剂中的铱含量是一个关键优先事项。在实际催化剂中,这通常是通过在尺寸稳定的金属氧化物载体材料上沉积氧化铱薄层来实现的,这种材料会降低电极组件中铱的体积堆积密度。通过比较两种不同结构类型的载体材料,结果表明金属氧化物载体的化学性质会对氧化铱相的结晶以及晶体生长方向产生强烈影响。在同构载体材料SnO上实现了结晶IrO的外延生长,二者均具有金红石结构且晶格常数非常相似。非晶态IrO在SnO衬底上结晶会形成相互连接的超小IrO微晶,这些微晶沿表面生长并牢固地锚定在衬底上。因此,IrO相在仅14原子%的极低Ir含量下,能在更高过电位和电流密度下实现优异的导电性和显著的催化剂稳定性。这里描述的化学外延为优化电催化剂的导电性、活性和稳定性以及开发其他外延材料体系开辟了新的前景。