Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, University of London, Strand, London WC2R 2LS, United Kingdom.
Departamento de Astronomía y Astrofísica, Universitat de València, Dr. Moliner 50, 46100 Burjassot (València), Spain.
Phys Rev Lett. 2023 Mar 3;130(9):091401. doi: 10.1103/PhysRevLett.130.091401.
The noise produced by the inspiral of millions of white dwarf binaries in the Milky Way may pose a threat to one of the main goals of the space-based LISA mission: the detection of massive black hole binary mergers. We present a novel study for reconstruction of merger waveforms in the presence of Galactic confusion noise using dictionary learning. We discuss the limitations of untangling signals from binaries with total mass from 10^{2} M_{⊙} to 10^{4} M_{⊙}. Our method proves extremely successful for binaries with total mass greater than ∼3×10^{3} M_{⊙} up to redshift 3 in conservative scenarios, and up to redshift 7.5 in optimistic scenarios. In addition, consistently good waveform reconstruction of merger events is found if the signal-to-noise ratio is approximately 5 or greater.
银河系中数百万对白矮星双星的并合产生的噪声可能会对基于太空的 LISA 任务的主要目标之一——探测大质量黑洞双星并合——构成威胁。我们提出了一种使用字典学习对存在银河系混杂噪声的并合波形进行重构的新研究。我们讨论了从总质量为 10^{2} M_{⊙}到 10^{4} M_{⊙}的双星中解开信号的限制。在保守情景下,我们的方法在总质量大于 ∼3×10^{3} M_{⊙}到红移 3 的双星中以及在乐观情景下直到红移 7.5 的双星中取得了极其成功的结果。此外,如果信噪比约为 5 或更大,则可以始终如一地对并合事件进行良好的波形重建。