Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China.
Phys Rev E. 2023 Feb;107(2-1):024406. doi: 10.1103/PhysRevE.107.024406.
There is now growing evidence of collective turbulentlike motion of cells in dense tissues. However, how to control and harness this collective motion is an open question. We investigate the transport of deformable active cells in a periodically asymmetric channel by using a phase-field model. We demonstrate that collective turbulent-like motion of cells can power and steer the macroscopic directional motion through the ratchet channel. The active intercellular forces proportional to the deformation of cells can break thermodynamical equilibrium and induce the directional motion. This directional motion is caused by the ratchet effect rather than the spontaneous symmetry breaking. The motion direction is determined by the asymmetry of the channel. Remarkably, there exits an optimal nonequilibrium driving (depending on the active strength, the elasticity, and the packing fraction) at which the average velocity reaches the maximum. In addition, the optimized packing fraction and the optimized minimum width of the channel can facilitate the directional motion of cells. Our findings are relevant to understanding how macroscopic directional motion relates to the local force transmission mediated by cell-cell contacts in cellular monolayers.
现在有越来越多的证据表明,密集组织中的细胞会产生集体紊流运动。然而,如何控制和利用这种集体运动仍是一个悬而未决的问题。我们使用相场模型研究了可变形活性细胞在周期性不对称通道中的输运。我们证明,细胞的集体紊流运动可以通过棘轮通道为宏观定向运动提供动力并进行引导。与细胞变形成正比的活性细胞间力可以打破热力学平衡并诱导定向运动。这种定向运动是由棘轮效应引起的,而不是自发对称破缺引起的。运动方向由通道的不对称性决定。值得注意的是,在存在最优非平衡驱动力的情况下(取决于活性强度、弹性和堆积分数),平均速度达到最大值。此外,优化的堆积分数和通道的优化最小宽度可以促进细胞的定向运动。我们的发现有助于理解宏观定向运动如何与细胞单层中细胞-细胞接触介导的局部力传递相关。