Suppr超能文献

统一的定向抛物线精确格子玻尔兹曼边界方案,用于旋转网格的狭窄间隙和蠕动和惯性流中的弯曲壁面。

Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows.

机构信息

Université Paris-Saclay, INRAE, UR HYCAR, 92160 Antony, France.

IDMEC, University of Évora, 7000-671 Évora, Portugal.

出版信息

Phys Rev E. 2023 Feb;107(2-2):025303. doi: 10.1103/PhysRevE.107.025303.

Abstract

The goal of this work is to advance the characteristics of existing lattice Boltzmann Dirichlet velocity boundary schemes in terms of the accuracy, locality, stability, and mass conservation for arbitrarily grid-inclined straight walls, curved surfaces, and narrow fluid gaps, for both creeping and inertial flow regimes. We reach this objective with two infinite-member boundary classes: (1) the single-node "Linear Plus" (LI^{+}) and (2) the two-node "Extended Multireflection" (EMR). The LI^{+} unifies all directional rules relying on the linear combinations of up to three pre- or postcollision populations, including their "ghost-node" interpolations and adjustable nonequilibrium approximations. On this basis, we propose three groups of LI^{+} nonequilibrium local corrections: (1) the LI_{1}^{+} is parametrized, meaning that its steady-state solution is physically consistent: the momentum accuracy is viscosity-independent in Stokes flow, and it is fixed by the Reynolds number (Re) in inertial flow; (2) the LI_{3}^{+} is parametrized, exact for arbitrary grid-rotated Poiseuille force-driven Stokes flow and thus most accurate in porous flow; and (3) the LI_{4}^{+} is parametrized, exact for pressure and inertial term gradients, and hence advantageous in very narrow porous gaps and at higher Reynolds range. The directional, two-relaxation-time collision operator plays a crucial role for all these features, but also for efficiency and robustness of the boundary schemes due to a proposed nonequilibrium linear stability criterion which reliably delineates their suitable coefficients and relaxation space. Our methodology allows one to improve any directional rule for Stokes or Navier-Stokes accuracy, but their parametrization is not guaranteed. In this context, the parametrized two-node EMR class enlarges the single-node schemes to match exactness in a grid-rotated linear Couette flow modeled with an equilibrium distribution designed for the Navier-Stokes equation (NSE). However, exactness of a grid-rotated Poiseuille NSE flow requires us to perform (1) the modification of the standard NSE term for exact bulk solvability and (2) the EMR extension towards the third neighbor node. A unique relaxation and equilibrium exact configuration for grid-rotated Poiseuille NSE flow allows us to classify the Galilean invariance characteristics of the boundary schemes without any bulk interference; in turn, its truncated solution suggests how, when increasing the Reynolds number, to avoid a deterioration of the mass-leakage rate and momentum accuracy due to a specific Reynolds scaling of the kinetic relaxation collision rate. The optimal schemes and strategies for creeping and inertial regimes are then singled out through a series of numerical tests, such as grid-rotated channels and rotated Couette flow with wall-normal injection, cylindrical porous array, and Couette flow between concentric cylinders, also comparing them against circular-shape fitted FEM solutions.

摘要

这项工作的目标是为任意网格倾斜的直壁、曲面和狭窄的流体间隙,推进现有格子 Boltzmann Dirichlet 速度边界方案在准确性、局部性、稳定性和质量守恒方面的特性,用于蠕动和惯性流态。我们通过两个无限成员边界类来实现这一目标:(1)单节点“线性加”(LI^{+})和(2)双节点“扩展多反射”(EMR)。LI^{+}统一了所有基于线性组合的方向规则,最多可使用三个预碰撞或后碰撞种群,包括它们的“幽灵节点”插值和可调非平衡近似。在此基础上,我们提出了三组 LI^{+}非平衡局部校正:(1)LI_{1}^{+}是参数化的,这意味着它的稳态解是物理一致的:在 Stokes 流中,动量精度与粘性无关,在惯性流中由雷诺数(Re)固定;(2)LI_{3}^{+}是参数化的,在任意网格旋转泊肃叶力驱动的 Stokes 流中是精确的,因此在多孔流中最准确;(3)LI_{4}^{+}是参数化的,在压力和惯性项梯度方面是精确的,因此在非常狭窄的多孔间隙和更高的雷诺数范围内具有优势。这种定向、双松弛时间碰撞算子对于所有这些特性都至关重要,但由于提出了一种非平衡线性稳定性标准,它还为边界方案的效率和鲁棒性提供了保障,该标准可靠地划定了它们合适的系数和松弛空间。我们的方法允许提高任何方向规则的 Stokes 或纳维斯托克斯精度,但不能保证它们的参数化。在这种情况下,参数化的双节点 EMR 类将单节点方案扩展到与用平衡分布建模的网格旋转线性 Couette 流匹配,该平衡分布是为 Navier-Stokes 方程(NSE)设计的。然而,为了匹配网格旋转泊肃叶 NSE 流的精确性,我们需要执行以下两项操作:(1)修改标准 NSE 项以实现精确的整体可解性;(2)将 EMR 扩展到第三个邻节点。网格旋转泊肃叶 NSE 流的独特松弛和平衡精确配置允许我们对边界方案的伽利略不变性特征进行分类,而不会对整体产生任何干扰;反过来,其截断解提示了如何在增加雷诺数时,避免由于动力学松弛碰撞率的特定雷诺数标度而导致质量泄漏率和动量精度的恶化。然后通过一系列数值测试,如网格旋转通道和带壁面法向注入的旋转 Couette 流、圆柱多孔阵列和同心圆柱之间的 Couette 流,以及与圆形拟合有限元解决方案的比较,确定了蠕动和惯性流态的最佳方案和策略。

相似文献

2
Multireflection boundary conditions for lattice Boltzmann models.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066614. doi: 10.1103/PhysRevE.68.066614. Epub 2003 Dec 31.
6
Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 2):066704. doi: 10.1103/PhysRevE.77.066704. Epub 2008 Jun 6.
8
Reviving the local second-order boundary approach within the two-relaxation-time lattice Boltzmann modelling.
Philos Trans A Math Phys Eng Sci. 2020 Jul 10;378(2175):20190404. doi: 10.1098/rsta.2019.0404. Epub 2020 Jun 22.
9
Enhanced single-node lattice Boltzmann boundary condition for fluid flows.
Phys Rev E. 2021 May;103(5-1):053308. doi: 10.1103/PhysRevE.103.053308.
10
Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023307. doi: 10.1103/PhysRevE.91.023307. Epub 2015 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验