Suppr超能文献

非牛顿格子玻尔兹曼模型与离网格反弹格式耦合的评估:奥斯特瓦尔德-德瓦勒流体流动中的壁面剪应力分布

Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back scheme: Wall shear stress distributions in Ostwald-de Waele fluids flow.

作者信息

Vaseghnia Hamed, Jettestuen Espen, Giljarhus Knut Erik Teigen, Aursjø Olav, Hiorth Aksel

机构信息

Department of Energy Resources, <a href="https://ror.org/02qte9q33">University of Stavanger</a>, Stavanger N-4036, Norway.

<a href="https://ror.org/02gagpf75">NORCE Norwegian Research Centre</a>, Oslo N-0166, Norway.

出版信息

Phys Rev E. 2024 Jul;110(1-2):015305. doi: 10.1103/PhysRevE.110.015305.

Abstract

We present a comprehensive analysis of the non-Newtonian lattice Boltzmann method (LBM) when it is used to simulate the distribution of wall shear stress (WSS). We systematically identify sources of numerical errors associated with non-Newtonian rheological behavior of fluids in off-grid geometries. We implement the single relaxation time, Bhatnagar-Gross-Krook (BGK), and multiple relaxation time (MRT) collision operators and investigate flow in a two-dimensional channel aligned with lattice directions and off-grid Hagen-Poiseuille flow of Ostwald-de Waele (power-law) fluids. As for boundary conditions, we implement constant body force-driven and pressure-driven flows. These two boundary conditions have different numerical challenges, which include numerical stability, accuracy, mass conservation, and compressibility effects, which are inherent in the LBM method. Our results indicate that MRT, when the relaxation times are adequately tuned in the non-Newtonian case, significantly improves the WSS distribution accuracy and the numerical stability of the LBM. MRT also enhances the stability and accuracy for non-Newtonian fluids compared with the Newtonian case, meaning that it is questionable if a BGK collision operator is appropriate to use in a non-Newtonian case with off-grid boundaries. When analyzing the non-Newtonian LBM in the context of staircase walls and interpolated bounce-back (IBB) walls, a MRT collision operator with the appropriate choice of tunable relaxation times makes it possible to achieve numerically accurate results without a significant increase in grid resolution for matching to the analytical solution of WSS distributions. In analyzing the non-Newtonian flows, we show that the viscosity dependency of bounce-back walls in the BGK-LBM deviates from the results obtained under Newtonian assumptions. The power-law index further influences these discrepancies, and errors caused by the viscosity dependency of the bounce-back boundary conditions can be effectively mitigated by implementing the MRT procedure. Results show that non-Newtonian fluids, in contrast with the Newtonian assumption, encounter a greater mass imbalance when flowing through a periodic system with IBB walls. MRT can address this challenge, as it allows for independent adjustments of physical relaxation times and enhances mass conservation in the case of non-Newtonian fluids. In pressure-driven non-Newtonian flows, there is a significant impact of bulk viscosity. This aspect is often overlooked in Newtonian simulations but can significantly impact fluid adapting to rapid changes in local effective viscosity. One of our main conclusions is that the MRT collision operator with tuned relaxation times can effectively resolve numerical problems caused by non-Newtonian rheological properties and off-grid geometries. We also provide practical guidelines for selecting the most suitable simulation approach.

摘要

我们对用于模拟壁面剪应力(WSS)分布的非牛顿格子玻尔兹曼方法(LBM)进行了全面分析。我们系统地识别了与非牛顿流体在非网格几何形状中的流变行为相关的数值误差来源。我们实现了单松弛时间、Bhatnagar-Gross-Krook(BGK)和多松弛时间(MRT)碰撞算子,并研究了与格子方向对齐的二维通道中的流动以及奥斯特瓦尔德-德瓦勒(幂律)流体的非网格哈根-泊肃叶流动。至于边界条件,我们实现了恒定体力驱动和压力驱动的流动。这两种边界条件存在不同的数值挑战,包括数值稳定性、准确性、质量守恒和可压缩性效应,这些都是LBM方法固有的。我们的结果表明,在非牛顿情况下适当调整松弛时间时,MRT能显著提高WSS分布的准确性和LBM的数值稳定性。与牛顿情况相比,MRT还提高了非牛顿流体的稳定性和准确性,这意味着在具有非网格边界的非牛顿情况下使用BGK碰撞算子是否合适值得怀疑。在分析阶梯壁和插值反弹(IBB)壁情况下的非牛顿LBM时,选择合适的可调松弛时间的MRT碰撞算子能够在不显著提高网格分辨率以匹配WSS分布解析解的情况下获得数值准确的结果。在分析非牛顿流动时,我们表明BGK-LBM中反弹壁的粘度依赖性与牛顿假设下获得的结果不同。幂律指数进一步影响这些差异,并且通过实施MRT程序可以有效减轻由反弹边界条件的粘度依赖性引起的误差。结果表明,与牛顿假设相反,非牛顿流体在通过具有IBB壁的周期性系统流动时会遇到更大的质量不平衡。MRT可以应对这一挑战,因为它允许独立调整物理松弛时间并增强非牛顿流体情况下的质量守恒。在压力驱动的非牛顿流动中,体积粘度有显著影响。这一方面在牛顿模拟中常常被忽视,但可能会对流体适应局部有效粘度的快速变化产生重大影响。我们的主要结论之一是,具有调整后松弛时间的MRT碰撞算子可以有效解决由非牛顿流变特性和非网格几何形状引起的数值问题。我们还提供了选择最合适模拟方法的实用指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验