Suppr超能文献

惯性随机过程的渡越计数:赖斯公式的推广。

Counting of level crossings for inertial random processes: Generalization of the Rice formula.

机构信息

Department of Condensed Matter Physics and Institute of Complex Systems (UBICS) University of Barcelona, 08028 Barcelona, Catalonia, Spain.

出版信息

Phys Rev E. 2023 Feb;107(2-1):024111. doi: 10.1103/PhysRevE.107.024111.

Abstract

We address the counting of level crossings for inertial stochastic processes. We review Rice's approach to the problem and generalize the classical Rice formula to include all Gaussian processes in their most general form. We apply the results to some second-order (i.e., inertial) processes of physical interest, such as Brownian motion, random acceleration and noisy harmonic oscillators. For all models we obtain the exact crossing intensities and discuss their long- and short-time dependence. We illustrate these results with numerical simulations.

摘要

我们研究了惯性随机过程的穿越计数问题。我们回顾了 Rice 对这个问题的研究方法,并将经典的 Rice 公式推广到了最一般的形式,包括所有的高斯过程。我们将这些结果应用于一些具有物理意义的二阶(即惯性)过程,如布朗运动、随机加速度和噪声谐振子。对于所有模型,我们都得到了精确的穿越强度,并讨论了它们的长时和短时依赖性。我们通过数值模拟来说明这些结果。

相似文献

4
Zero-crossing statistics for non-Markovian time series.非马尔可夫时间序列的过零点统计。
Phys Rev E. 2018 Mar;97(3-1):032114. doi: 10.1103/PhysRevE.97.032114.
10
Distribution of velocities and acceleration for a particle in Brownian correlated disorder: inertial case.布朗关联无序中粒子的速度和加速度分布:惯性情形
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061116. doi: 10.1103/PhysRevE.85.061116. Epub 2012 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验