Suppr超能文献

在分叉处学会自折叠。

Learning to self-fold at a bifurcation.

机构信息

Department of Physics, University of Chicago, Chicago, Illinois 60637, USA.

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Phys Rev E. 2023 Feb;107(2-2):025001. doi: 10.1103/PhysRevE.107.025001.

Abstract

Disordered mechanical systems can deform along a network of pathways that branch and recombine at special configurations called bifurcation points. Multiple pathways are accessible from these bifurcation points; consequently, computer-aided design algorithms have been sought to achieve a specific structure of pathways at bifurcations by rationally designing the geometry and material properties of these systems. Here, we explore an alternative physical training framework in which the topology of folding pathways in a disordered sheet is changed in a desired manner due to changes in crease stiffnesses induced by prior folding. We study the quality and robustness of such training for different "learning rules," that is, different quantitative ways in which local strain changes the local folding stiffness. We experimentally demonstrate these ideas using sheets with epoxy-filled creases whose stiffnesses change due to folding before the epoxy sets. Our work shows how specific forms of plasticity in materials enable them to learn nonlinear behaviors through their prior deformation history in a robust manner.

摘要

紊乱的力学系统可以沿着分支和在称为分叉点的特殊构型处重新组合的网络变形。这些分叉点可以从多个路径进入;因此,人们一直在寻求计算机辅助设计算法,通过合理设计这些系统的几何形状和材料特性,在分叉处实现特定的路径结构。在这里,我们探索了一种替代的物理训练框架,其中由于先前折叠引起的折痕硬度的变化,无序薄片中折叠路径的拓扑结构以期望的方式发生变化。我们研究了不同“学习规则”(即局部应变改变局部折叠硬度的不同定量方式)下的这种训练的质量和鲁棒性。我们使用填充有环氧树脂的折痕薄片进行了实验演示,这些薄片的硬度由于环氧树脂凝固之前的折叠而发生变化。我们的工作表明,材料中特定形式的塑性如何以稳健的方式使它们能够通过先前的变形历史来学习非线性行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验