Suppr超能文献

通过机械系统的物理变化进行有监督学习。

Supervised learning through physical changes in a mechanical system.

机构信息

Department of Physics, The University of Chicago, Chicago, IL 60637.

Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14843-14850. doi: 10.1073/pnas.2000807117. Epub 2020 Jun 16.

Abstract

Mechanical metamaterials are usually designed to show desired responses to prescribed forces. In some applications, the desired force-response relationship is hard to specify exactly, but examples of forces and desired responses are easily available. Here, we propose a framework for supervised learning in thin, creased sheets that learn the desired force-response behavior by physically experiencing training examples and then, crucially, respond correctly (generalize) to previously unseen test forces. During training, we fold the sheet using training forces, prompting local crease stiffnesses to change in proportion to their experienced strain. We find that this learning process reshapes nonlinearities inherent in folding a sheet so as to show the correct response for previously unseen test forces. We show the relationship between training error, test error, and sheet size (model complexity) in learning sheets and compare them to counterparts in machine-learning algorithms. Our framework shows how the rugged energy landscape of disordered mechanical materials can be sculpted to show desired force-response behaviors by a local physical learning process.

摘要

机械类超材料通常旨在对预定力产生所需响应。在某些应用中,难以精确指定所需的力-响应关系,但力和响应的示例很容易获得。在这里,我们提出了一个薄褶皱片的监督学习框架,该框架通过物理体验训练示例来学习所需的力-响应行为,然后关键是对以前未见的测试力做出正确的响应(泛化)。在训练过程中,我们使用训练力来折叠薄片,促使局部褶皱的刚度按其经历的应变成比例变化。我们发现,这种学习过程重塑了折叠薄片固有的非线性,从而为以前未见的测试力显示出正确的响应。我们展示了学习薄片中训练误差、测试误差和薄片尺寸(模型复杂度)之间的关系,并将其与机器学习算法中的对应关系进行了比较。我们的框架展示了如何通过局部物理学习过程来塑造无序机械材料的崎岖能量景观,以显示所需的力-响应行为。

相似文献

1
Supervised learning through physical changes in a mechanical system.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14843-14850. doi: 10.1073/pnas.2000807117. Epub 2020 Jun 16.
2
Learning to self-fold at a bifurcation.
Phys Rev E. 2023 Feb;107(2-2):025001. doi: 10.1103/PhysRevE.107.025001.
3
Shaping the topology of folding pathways in mechanical systems.
Nat Commun. 2018 Oct 16;9(1):4303. doi: 10.1038/s41467-018-06720-1.
4
Programmable matter by folding.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12441-5. doi: 10.1073/pnas.0914069107. Epub 2010 Jun 28.
5
Self-folding origami at any energy scale.
Nat Commun. 2017 May 18;8:15477. doi: 10.1038/ncomms15477.
6
Crumpling of thin sheets as a basis for creating mechanical metamaterials.
RSC Adv. 2019 Feb 11;9(9):5174-5188. doi: 10.1039/c8ra07565d. eCollection 2019 Feb 5.
7
Mechanical response of a creased sheet.
Phys Rev Lett. 2014 Jun 20;112(24):244301. doi: 10.1103/PhysRevLett.112.244301.
8
Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness.
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2032-2037. doi: 10.1073/pnas.1720171115. Epub 2018 Feb 12.
10
Foldable cones as a framework for nonrigid origami.
Phys Rev E. 2019 Sep;100(3-1):033003. doi: 10.1103/PhysRevE.100.033003.

引用本文的文献

1
Temporal Contrastive Learning through implicit non-equilibrium memory.
Nat Commun. 2025 Mar 4;16(1):2163. doi: 10.1038/s41467-025-57043-x.
2
Training all-mechanical neural networks for task learning through in situ backpropagation.
Nat Commun. 2024 Dec 9;15(1):10528. doi: 10.1038/s41467-024-54849-z.
3
Natural Induction: Spontaneous Adaptive Organisation without Natural Selection.
Entropy (Basel). 2024 Sep 6;26(9):765. doi: 10.3390/e26090765.
4
Mechanical Neural Networks with Explicit and Robust Neurons.
Adv Sci (Weinh). 2024 Sep;11(33):e2310241. doi: 10.1002/advs.202310241. Epub 2024 Jun 19.
5
Machine Learning Aided Design and Optimization of Thermal Metamaterials.
Chem Rev. 2024 Apr 10;124(7):4258-4331. doi: 10.1021/acs.chemrev.3c00708. Epub 2024 Mar 28.
7
DNA as a universal chemical substrate for computing and data storage.
Nat Rev Chem. 2024 Mar;8(3):179-194. doi: 10.1038/s41570-024-00576-4. Epub 2024 Feb 9.
9
Learning to learn by using nonequilibrium training protocols for adaptable materials.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2219558120. doi: 10.1073/pnas.2219558120. Epub 2023 Jun 26.
10
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind.
Anim Cogn. 2023 Nov;26(6):1865-1891. doi: 10.1007/s10071-023-01780-3. Epub 2023 May 19.

本文引用的文献

1
Directed aging, memory, and nature's greed.
Sci Adv. 2019 Dec 20;5(12):eaax4215. doi: 10.1126/sciadv.aax4215. eCollection 2019 Dec.
2
A deep learning framework for neuroscience.
Nat Neurosci. 2019 Nov;22(11):1761-1770. doi: 10.1038/s41593-019-0520-2. Epub 2019 Oct 28.
3
Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction.
Adv Mater. 2019 Sep;31(39):e0193006. doi: 10.1002/adma.201903006. Epub 2019 Aug 12.
4
Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning.
Phys Rev Lett. 2018 Dec 21;121(25):255304. doi: 10.1103/PhysRevLett.121.255304.
5
Shaping the topology of folding pathways in mechanical systems.
Nat Commun. 2018 Oct 16;9(1):4303. doi: 10.1038/s41467-018-06720-1.
6
Multi-step self-guided pathways for shape-changing metamaterials.
Nature. 2018 Sep;561(7724):512-515. doi: 10.1038/s41586-018-0541-0. Epub 2018 Sep 26.
7
SchNet - A deep learning architecture for molecules and materials.
J Chem Phys. 2018 Jun 28;148(24):241722. doi: 10.1063/1.5019779.
8
Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.
ACS Nano. 2018 Jun 26;12(6):6326-6334. doi: 10.1021/acsnano.8b03569. Epub 2018 Jun 11.
9
Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation.
Front Comput Neurosci. 2017 May 4;11:24. doi: 10.3389/fncom.2017.00024. eCollection 2017.
10
Self-folding origami at any energy scale.
Nat Commun. 2017 May 18;8:15477. doi: 10.1038/ncomms15477.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验