Suppr超能文献

通过机械系统的物理变化进行有监督学习。

Supervised learning through physical changes in a mechanical system.

机构信息

Department of Physics, The University of Chicago, Chicago, IL 60637.

Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14843-14850. doi: 10.1073/pnas.2000807117. Epub 2020 Jun 16.

Abstract

Mechanical metamaterials are usually designed to show desired responses to prescribed forces. In some applications, the desired force-response relationship is hard to specify exactly, but examples of forces and desired responses are easily available. Here, we propose a framework for supervised learning in thin, creased sheets that learn the desired force-response behavior by physically experiencing training examples and then, crucially, respond correctly (generalize) to previously unseen test forces. During training, we fold the sheet using training forces, prompting local crease stiffnesses to change in proportion to their experienced strain. We find that this learning process reshapes nonlinearities inherent in folding a sheet so as to show the correct response for previously unseen test forces. We show the relationship between training error, test error, and sheet size (model complexity) in learning sheets and compare them to counterparts in machine-learning algorithms. Our framework shows how the rugged energy landscape of disordered mechanical materials can be sculpted to show desired force-response behaviors by a local physical learning process.

摘要

机械类超材料通常旨在对预定力产生所需响应。在某些应用中,难以精确指定所需的力-响应关系,但力和响应的示例很容易获得。在这里,我们提出了一个薄褶皱片的监督学习框架,该框架通过物理体验训练示例来学习所需的力-响应行为,然后关键是对以前未见的测试力做出正确的响应(泛化)。在训练过程中,我们使用训练力来折叠薄片,促使局部褶皱的刚度按其经历的应变成比例变化。我们发现,这种学习过程重塑了折叠薄片固有的非线性,从而为以前未见的测试力显示出正确的响应。我们展示了学习薄片中训练误差、测试误差和薄片尺寸(模型复杂度)之间的关系,并将其与机器学习算法中的对应关系进行了比较。我们的框架展示了如何通过局部物理学习过程来塑造无序机械材料的崎岖能量景观,以显示所需的力-响应行为。

相似文献

1
Supervised learning through physical changes in a mechanical system.通过机械系统的物理变化进行有监督学习。
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14843-14850. doi: 10.1073/pnas.2000807117. Epub 2020 Jun 16.
2
Learning to self-fold at a bifurcation.在分叉处学会自折叠。
Phys Rev E. 2023 Feb;107(2-2):025001. doi: 10.1103/PhysRevE.107.025001.
4
Programmable matter by folding.通过折叠实现可编程物质。
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12441-5. doi: 10.1073/pnas.0914069107. Epub 2010 Jun 28.
5
Self-folding origami at any energy scale.在任何能量尺度下的自折叠折纸。
Nat Commun. 2017 May 18;8:15477. doi: 10.1038/ncomms15477.
7
Mechanical response of a creased sheet.褶皱薄板的力学响应。
Phys Rev Lett. 2014 Jun 20;112(24):244301. doi: 10.1103/PhysRevLett.112.244301.
10
Foldable cones as a framework for nonrigid origami.可折叠圆锥体作为非刚性折纸的框架。
Phys Rev E. 2019 Sep;100(3-1):033003. doi: 10.1103/PhysRevE.100.033003.

引用本文的文献

4
Mechanical Neural Networks with Explicit and Robust Neurons.具有显式和鲁棒神经元的机械神经网络。
Adv Sci (Weinh). 2024 Sep;11(33):e2310241. doi: 10.1002/advs.202310241. Epub 2024 Jun 19.
5
Machine Learning Aided Design and Optimization of Thermal Metamaterials.机器学习辅助的热超材料设计与优化
Chem Rev. 2024 Apr 10;124(7):4258-4331. doi: 10.1021/acs.chemrev.3c00708. Epub 2024 Mar 28.
7
DNA as a universal chemical substrate for computing and data storage.DNA 作为通用的化学计算和数据存储基质。
Nat Rev Chem. 2024 Mar;8(3):179-194. doi: 10.1038/s41570-024-00576-4. Epub 2024 Feb 9.
9
Learning to learn by using nonequilibrium training protocols for adaptable materials.通过使用非平衡训练协议来学习适应材料。
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2219558120. doi: 10.1073/pnas.2219558120. Epub 2023 Jun 26.

本文引用的文献

1
Directed aging, memory, and nature's greed.定向衰老、记忆与自然的贪婪。
Sci Adv. 2019 Dec 20;5(12):eaax4215. doi: 10.1126/sciadv.aax4215. eCollection 2019 Dec.
2
A deep learning framework for neuroscience.深度学习在神经科学中的应用框架。
Nat Neurosci. 2019 Nov;22(11):1761-1770. doi: 10.1038/s41593-019-0520-2. Epub 2019 Oct 28.
6
Multi-step self-guided pathways for shape-changing metamaterials.多步骤自导形变法向超材料路径。
Nature. 2018 Sep;561(7724):512-515. doi: 10.1038/s41586-018-0541-0. Epub 2018 Sep 26.
8
Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.基于深度学习的手性超材料按需设计
ACS Nano. 2018 Jun 26;12(6):6326-6334. doi: 10.1021/acsnano.8b03569. Epub 2018 Jun 11.
10
Self-folding origami at any energy scale.在任何能量尺度下的自折叠折纸。
Nat Commun. 2017 May 18;8:15477. doi: 10.1038/ncomms15477.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验