Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15206, USA.
Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA.
J Biomed Inform. 2023 Apr;140:104341. doi: 10.1016/j.jbi.2023.104341. Epub 2023 Mar 17.
Pharmacokinetic natural product-drug interactions (NPDIs) occur when botanical or other natural products are co-consumed with pharmaceutical drugs. With the growing use of natural products, the risk for potential NPDIs and consequent adverse events has increased. Understanding mechanisms of NPDIs is key to preventing or minimizing adverse events. Although biomedical knowledge graphs (KGs) have been widely used for drug-drug interaction applications, computational investigation of NPDIs is novel. We constructed NP-KG as a first step toward computational discovery of plausible mechanistic explanations for pharmacokinetic NPDIs that can be used to guide scientific research.
We developed a large-scale, heterogeneous KG with biomedical ontologies, linked data, and full texts of the scientific literature. To construct the KG, biomedical ontologies and drug databases were integrated with the Phenotype Knowledge Translator framework. The semantic relation extraction systems, SemRep and Integrated Network and Dynamic Reasoning Assembler, were used to extract semantic predications (subject-relation-object triples) from full texts of the scientific literature related to the exemplar natural products green tea and kratom. A literature-based graph constructed from the predications was integrated into the ontology-grounded KG to create NP-KG. NP-KG was evaluated with case studies of pharmacokinetic green tea- and kratom-drug interactions through KG path searches and meta-path discovery to determine congruent and contradictory information in NP-KG compared to ground truth data. We also conducted an error analysis to identify knowledge gaps and incorrect predications in the KG.
The fully integrated NP-KG consisted of 745,512 nodes and 7,249,576 edges. Evaluation of NP-KG resulted in congruent (38.98% for green tea, 50% for kratom), contradictory (15.25% for green tea, 21.43% for kratom), and both congruent and contradictory (15.25% for green tea, 21.43% for kratom) information compared to ground truth data. Potential pharmacokinetic mechanisms for several purported NPDIs, including the green tea-raloxifene, green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-venlafaxine interactions were congruent with the published literature.
NP-KG is the first KG to integrate biomedical ontologies with full texts of the scientific literature focused on natural products. We demonstrate the application of NP-KG to identify known pharmacokinetic interactions between natural products and pharmaceutical drugs mediated by drug metabolizing enzymes and transporters. Future work will incorporate context, contradiction analysis, and embedding-based methods to enrich NP-KG. NP-KG is publicly available at https://doi.org/10.5281/zenodo.6814507. The code for relation extraction, KG construction, and hypothesis generation is available at https://github.com/sanyabt/np-kg.
当植物药或其他天然产品与药物同时使用时,就会发生药代动力学天然产物-药物相互作用(NPDI)。随着天然产品使用的增加,发生潜在 NPDI 和随之而来的不良事件的风险也增加了。了解 NPDI 的机制是预防或最小化不良事件的关键。尽管生物医学知识图谱(KG)已被广泛用于药物相互作用应用,但对 NPDI 的计算研究是新颖的。我们构建了 NP-KG,作为计算发现可能的药代动力学 NPDI 机制的第一步,这些机制可用于指导科学研究。
我们使用生物医学本体、链接数据和科学文献的全文构建了一个大规模的、异构的 KG。为了构建 KG,我们使用 Phenotype Knowledge Translator 框架整合了生物医学本体和药物数据库。语义关系抽取系统 SemRep 和集成网络和动态推理组件被用于从与示例天然产物绿茶和卡痛相关的科学文献的全文中提取语义谓词(主语-关系-宾语三元组)。从这些谓词构建的基于文献的图被整合到本体化的 KG 中,以创建 NP-KG。通过 KG 路径搜索和元路径发现对 NP-KG 进行了案例研究,以确定与绿茶和卡痛药代动力学相互作用的真实数据相比,NP-KG 中的一致和矛盾信息。我们还进行了错误分析,以确定 KG 中的知识空白和错误的预测。
完全集成的 NP-KG 由 745512 个节点和 7249576 条边组成。与真实数据相比,NP-KG 的评估结果为一致(绿茶为 38.98%,卡痛为 50%)、矛盾(绿茶为 15.25%,卡痛为 21.43%)和既一致又矛盾(绿茶为 15.25%,卡痛为 21.43%)。与发表的文献相比,一些假定的 NPDI 的潜在药代动力学机制,包括绿茶-雷洛昔芬、绿茶-纳多洛尔、卡痛-咪达唑仑、卡痛-喹硫平、卡痛-文拉法辛相互作用,都是一致的。
NP-KG 是第一个将生物医学本体与专注于天然产物的科学文献全文整合在一起的 KG。我们展示了如何使用 NP-KG 来识别天然产物与药物之间已知的药代动力学相互作用,这些相互作用是由药物代谢酶和转运体介导的。未来的工作将结合上下文、矛盾分析和基于嵌入的方法来丰富 NP-KG。NP-KG 可在 https://doi.org/10.5281/zenodo.6814507 上获得。关系提取、KG 构建和假设生成的代码可在 https://github.com/sanyabt/np-kg 上获得。