Suppr超能文献

电抽搐治疗计算建模中的准静态管道。

Quasi-static pipeline in electroconvulsive therapy computational modeling.

机构信息

Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.

Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.

出版信息

Brain Stimul. 2023 Mar-Apr;16(2):607-618. doi: 10.1016/j.brs.2023.03.007. Epub 2023 Mar 16.

Abstract

BACKGROUND

Computational models of current flow during Electroconvulsive Therapy (ECT) rely on the quasi-static assumption, yet tissue impedance during ECT may be frequency specific and change adaptively to local electric field intensity.

OBJECTIVES

We systematically consider the application of the quasi-static pipeline to ECT under conditions where 1) static impedance is measured before ECT and 2) during ECT when dynamic impedance is measured. We propose an update to ECT modeling accounting for frequency-dependent impedance.

METHODS

The frequency content on an ECT device output is analyzed. The ECT electrode-body impedance under low-current conditions is measured with an impedance analyzer. A framework for ECT modeling under quasi-static conditions based on a single device-specific frequency (e.g., 1 kHz) is proposed.

RESULTS

Impedance using ECT electrodes under low-current is frequency dependent and subject specific, and can be approximated at >100 Hz with a subject-specific lumped parameter circuit model but at <100 Hz increased non-linearly. The ECT device uses a 2 μA 800 Hz test signal and reports a static impedance that approximate 1 kHz impedance. Combined with prior evidence suggesting that conductivity does not vary significantly across ECT output frequencies at high-currents (800-900 mA), we update the adaptive pipeline for ECT modeling centered at 1 kHz frequency. Based on individual MRI and adaptive skin properties, models match static impedance (at 2 μA) and dynamic impedance (at 900 mA) of four ECT subjects.

CONCLUSIONS

By considering ECT modeling at a single representative frequency, ECT adaptive and non-adaptive modeling can be rationalized under a quasi-static pipeline.

摘要

背景

目前电痉挛疗法(ECT)电流的计算模型依赖于准静态假设,但 ECT 期间的组织阻抗可能具有频率特异性,并能自适应地改变局部电场强度。

目的

我们系统地考虑了准静态管道在以下情况下应用于 ECT:1)ECT 前测量静态阻抗,2)ECT 期间测量动态阻抗。我们提出了一种针对频率相关阻抗的 ECT 建模更新方法。

方法

分析 ECT 设备输出的频率内容。使用阻抗分析仪测量低电流条件下的 ECT 电极-体阻抗。提出了一种基于单个设备特定频率(例如 1 kHz)的准静态条件下 ECT 建模框架。

结果

低电流下 ECT 电极的阻抗是频率相关的和个体特有的,可以在 >100 Hz 时使用个体特有的集总参数电路模型进行近似,但在 <100 Hz 时会呈非线性增加。ECT 设备使用 2 μA 的 800 Hz 测试信号,并报告接近 1 kHz 阻抗的静态阻抗。结合先前的证据表明,在高电流(800-900 mA)下,电导率在 ECT 输出频率范围内没有明显变化,我们更新了以 1 kHz 为中心的 ECT 建模自适应管道。基于个体 MRI 和自适应皮肤特性,模型匹配了四个 ECT 受试者的静态阻抗(在 2 μA 时)和动态阻抗(在 900 mA 时)。

结论

通过在单个代表性频率下考虑 ECT 建模,可以将 ECT 自适应和非自适应建模合理化到准静态管道中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67de/10988926/6fb27dba8814/nihms-1977653-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验