School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510641, China.
Department of Materials Science and Engineering, & ARC Centre of Excellence in Future Low Energy Electronics Technologies, Monash University, Clayton, VIC, Australia.
Nat Commun. 2023 Mar 18;14(1):1519. doi: 10.1038/s41467-023-37239-9.
The presence of the van der Waals gap in layered materials creates a wealth of intriguing phenomena different to their counterparts in conventional materials. For example, pressurization can generate a large anisotropic lattice shrinkage along the stacking orientation and/or a significant interlayer sliding, and many of the exotic pressure-dependent properties derive from these mechanisms. Here we report a giant piezoresistivity in pressurized β'-InSe. Upon compression, a six-orders-of-magnitude drop of electrical resistivity is obtained below 1.2 GPa in β'-InSe flakes, yielding a giant piezoresistive gauge π of -5.33 GPa. Simultaneously, the sample undergoes a semiconductor-to-semimetal transition without a structural phase transition. Surprisingly, linear dichroism study and theoretical first principles modelling show that these phenomena arise not due to shrinkage or sliding at the van der Waals gap, but rather are dominated by the layer-dependent atomic motions inside the quintuple layer, mainly from the shifting of middle Se atoms to their high-symmetric location. The atomic motions link to both the band structure modulation and the in-plane ferroelectric dipoles. Our work not only provides a prominent piezoresistive material but also points out the importance of intralayer atomic motions beyond van der Waals gap.
层状材料中范德华间隙的存在产生了丰富的有趣现象,与传统材料中的现象不同。例如,加压可以沿堆积方向产生大的各向异性晶格收缩和/或显著的层间滑动,许多奇异的压力依赖性性质源于这些机制。在这里,我们报告了加压β'-InSe 中的巨大压阻效应。在压缩时,β'-InSe 薄片在低于 1.2 GPa 的压力下获得了电阻率下降六个数量级,压阻系数π达到-5.33 GPa。同时,样品经历了半导体到半金属的转变,而没有结构相变。令人惊讶的是,线性二色性研究和理论第一性原理模拟表明,这些现象不是由于范德华间隙的收缩或滑动引起的,而是主要由五重层内的层依赖原子运动主导,主要是中间 Se 原子向其高对称位置的移动。原子运动与能带结构调制和平面内铁电极化偶极子有关。我们的工作不仅提供了一种突出的压阻材料,而且还指出了范德华间隙之外的层内原子运动的重要性。