College of Forestry, Sichuan Agricultural University, Chengdu, China.
Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Glob Chang Biol. 2023 Jun;29(12):3503-3515. doi: 10.1111/gcb.16676. Epub 2023 Mar 19.
Microbial necromass is an important source and component of soil organic matter (SOM), especially within the most stable pools. Global change factors such as anthropogenic nitrogen (N), phosphorus (P), and potassium (K) inputs, climate warming, elevated atmospheric carbon dioxide (eCO ), and periodic precipitation reduction (drought) strongly affect soil microorganisms and consequently, influence microbial necromass formation. The impacts of these global change factors on microbial necromass are poorly understood despite their critical role in the cycling and sequestration of soil carbon (C) and nutrients. Here, we conducted a meta-analysis to reveal general patterns of the effects of nutrient addition, warming, eCO , and drought on amino sugars (biomarkers of microbial necromass) in soils under croplands, forests, and grasslands. Nitrogen addition combined with P and K increased the content of fungal (+21%), bacterial (+22%), and total amino sugars (+9%), consequently leading to increased SOM formation. Nitrogen addition alone increased solely bacterial necromass (+10%) because the decrease of N limitation stimulated bacterial more than fungal growth. Warming increased bacterial necromass, because bacteria have competitive advantages at high temperatures compared to fungi. Other global change factors (P and NP addition, eCO , and drought) had minor effects on microbial necromass because of: (i) compensation of the impacts by opposite processes, and (ii) the short duration of experiments compared to the slow microbial necromass turnover. Future studies should focus on: (i) the stronger response of bacterial necromass to N addition and warming compared to that of fungi, and (ii) the increased microbial necromass contribution to SOM accumulation and stability under NPK fertilization, and thereby for negative feedback to climate warming.
微生物残体是土壤有机质 (SOM) 的重要来源和组成部分,尤其是在最稳定的库中。人为氮 (N)、磷 (P) 和钾 (K) 输入、气候变暖、大气二氧化碳 (eCO ) 升高和周期性降水减少 (干旱) 等全球变化因素强烈影响土壤微生物,从而影响微生物残体的形成。尽管这些全球变化因素在土壤碳 (C) 和养分的循环和固存中起着关键作用,但人们对它们对微生物残体的影响知之甚少。在这里,我们进行了一项荟萃分析,以揭示养分添加、增温、eCO 和干旱对农田、森林和草原土壤中氨基糖 (微生物残体的生物标志物) 的影响的一般模式。氮素添加与 P 和 K 结合增加了真菌 (+21%)、细菌 (+22%) 和总氨基糖 (+9%) 的含量,从而导致 SOM 形成增加。单独添加氮素仅增加了细菌残体 (+10%),因为氮素限制的减少刺激了细菌比真菌生长更多。增温增加了细菌残体,因为与真菌相比,细菌在高温下具有竞争优势。其他全球变化因素 (P 和 NP 添加、eCO 和干旱) 对微生物残体的影响较小,原因是:(i) 相反过程的补偿,以及 (ii) 与微生物残体周转缓慢相比,实验持续时间较短。未来的研究应重点关注:(i) 与真菌相比,细菌残体对氮素添加和增温的响应更强,以及 (ii) 在 NPK 施肥下,微生物残体对 SOM 积累和稳定性的贡献增加,从而对气候变暖产生负反馈。