Suppr超能文献

用于医学图像异常检测的具有自监督细化的双分布差异

Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images.

作者信息

Cai Yu, Chen Hao, Yang Xin, Zhou Yu, Cheng Kwang-Ting

机构信息

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Med Image Anal. 2023 May;86:102794. doi: 10.1016/j.media.2023.102794. Epub 2023 Mar 13.

Abstract

Medical anomaly detection is a crucial yet challenging task aimed at recognizing abnormal images to assist in diagnosis. Due to the high-cost annotations of abnormal images, most methods utilize only known normal images during training and identify samples deviating from the normal profile as anomalies in the testing phase. Many readily available unlabeled images containing anomalies are thus ignored in the training phase, restricting the performance. To solve this problem, we introduce one-class semi-supervised learning (OC-SSL) to utilize known normal and unlabeled images for training, and propose Dual-distribution Discrepancy for Anomaly Detection (DDAD) based on this setting. Ensembles of reconstruction networks are designed to model the distribution of normal images and the distribution of both normal and unlabeled images, deriving the normative distribution module (NDM) and unknown distribution module (UDM). Subsequently, the intra-discrepancy of NDM and inter-discrepancy between the two modules are designed as anomaly scores. Furthermore, we propose a new perspective on self-supervised learning, which is designed to refine the anomaly scores rather than directly detect anomalies. Five medical datasets, including chest X-rays, brain MRIs and retinal fundus images, are organized as benchmarks for evaluation. Experiments on these benchmarks comprehensively compare a wide range of anomaly detection methods and demonstrate that our method achieves significant gains and outperforms the state-of-the-art. Code and organized benchmarks are available at https://github.com/caiyu6666/DDAD-ASR.

摘要

医学异常检测是一项至关重要但具有挑战性的任务,旨在识别异常图像以辅助诊断。由于异常图像的标注成本高昂,大多数方法在训练期间仅使用已知的正常图像,并在测试阶段将偏离正常特征的样本识别为异常。因此,许多包含异常的现成未标记图像在训练阶段被忽略,这限制了性能。为了解决这个问题,我们引入单类半监督学习(OC-SSL)来利用已知的正常图像和未标记图像进行训练,并基于此设置提出用于异常检测的双分布差异(DDAD)。设计重建网络的集成来对正常图像的分布以及正常图像和未标记图像的分布进行建模,从而得出规范分布模块(NDM)和未知分布模块(UDM)。随后,将NDM的内部差异以及两个模块之间的相互差异设计为异常分数。此外,我们提出了一种关于自监督学习的新观点,其旨在优化异常分数而非直接检测异常。组织了包括胸部X光、脑部MRI和视网膜眼底图像在内的五个医学数据集作为评估基准。在这些基准上进行的实验全面比较了广泛的异常检测方法,并表明我们的方法取得了显著进展且优于当前的先进方法。代码和整理好的基准可在https://github.com/caiyu6666/DDAD-ASR获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验