Suppr超能文献

比较长期暴露于环境空气污染与死亡率之间关联的“因果”方法和“传统”方法:结果的敏感性如何?

Comparing "causal" and "traditional" approaches in the association of long-term exposure to ambient air pollution on mortality: How sensitive are the results?

作者信息

Stafoggia Massimo, Analitis Antonis, Chen Jie, Rodopoulou Sophia, Brunekreef Bert, Hoek Gerard, Wolf Kathrin, Samoli Evangelia

机构信息

Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

出版信息

Environ Int. 2023 Apr;174:107872. doi: 10.1016/j.envint.2023.107872. Epub 2023 Mar 14.

Abstract

BACKGROUND

Few comparisons between causal inference and traditional approaches have been performed. We applied "causal" and "traditional" methods to investigate the association between long-term air pollution exposure (PM and NO) and mortality.

METHODS

We analyzed pooled data from eight well-characterized cohorts and one administrative cohort. We defined the generalized propensity score (GPS) as the conditional likelihood of exposure given confounders, and derived corresponding inverse-probability weights (IPW). We applied Cox-proportional hazard models weighted by IPW, adjusted for GPS, and directly adjusting for all confounders.

RESULTS

In IPW models, PM 5 µg/m increases were associated with hazard ratios (HR) = 1.141 (95% confidence interval (CI): 1.107, 1.176) and 1.050 (1.014, 1.088) in the pooled and administrative cohorts. Corresponding estimates for traditional Cox models were 1.132 (1.107, 1.158) and 1.057 (1.025, 1.089). Almost identical results were found for all approaches and both pollutants, when unbalanced covariates were adjusted for in causal models.

CONCLUSIONS

Traditional and causal approaches provided consistent associations between long-term exposure to air pollution and mortality.

摘要

背景

因果推断与传统方法之间的比较很少。我们应用“因果”和“传统”方法来研究长期空气污染暴露(PM和NO)与死亡率之间的关联。

方法

我们分析了来自八个特征明确的队列和一个行政队列的汇总数据。我们将广义倾向得分(GPS)定义为给定混杂因素时暴露的条件似然,并得出相应的逆概率权重(IPW)。我们应用了经IPW加权、针对GPS进行调整并直接对所有混杂因素进行调整的Cox比例风险模型。

结果

在IPW模型中,在汇总队列和行政队列中,PM每增加5 μg/m³,风险比(HR)分别为1.141(95%置信区间(CI):1.107,1.176)和1.050(1.014,1.088)。传统Cox模型的相应估计值分别为1.132(1.107,1.158)和1.057(1.025,1.089)。当在因果模型中对不平衡协变量进行调整时,所有方法和两种污染物均得到了几乎相同的结果。

结论

传统方法和因果方法在长期空气污染暴露与死亡率之间提供了一致的关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验