Institute of Epidemiology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany.
Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Environ Pollut. 2023 Jun 15;327:121515. doi: 10.1016/j.envpol.2023.121515. Epub 2023 Mar 24.
Most studies investigating the health effects of long-term exposure to air pollution used traditional regression models, although causal inference approaches have been proposed as alternative. However, few studies have applied causal models and comparisons with traditional methods are sparse. We therefore compared the associations between natural-cause mortality and exposure to fine particulate matter (PM) and nitrogen dioxide (NO) using traditional Cox and causal models in a large multicenter cohort setting. We analysed data from eight well-characterized cohorts (pooled cohort) and seven administrative cohorts from eleven European countries. Annual mean PM and NO from Europe-wide models were assigned to baseline residential addresses and dichotomized at selected cut-off values (PM: 10, 12, 15 μg/m³; NO: 20, 40 μg/m³). For each pollutant, we estimated the propensity score as the conditional likelihood of exposure given available covariates, and derived corresponding inverse-probability weights (IPW). We applied Cox proportional hazards models i) adjusting for all covariates ("traditional Cox") and ii) weighting by IPW ("causal model"). Of 325,367 and 28,063,809 participants in the pooled and administrative cohorts, 47,131 and 3,580,264 died from natural causes, respectively. For PM above vs. below 12 μg/m³, the hazard ratios (HRs) of natural-cause mortality were 1.17 (95% CI 1.13-1.21) and 1.15 (1.11-1.19) for the traditional and causal models in the pooled cohort, and 1.03 (1.01-1.06) and 1.02 (0.97-1.09) in the administrative cohorts. For NO above vs below 20 μg/m³, the HRs were 1.12 (1.09-1.14) and 1.07 (1.05-1.09) for the pooled and 1.06 (95% CI 1.03-1.08) and 1.05 (1.02-1.07) for the administrative cohorts. In conclusion, we observed mostly consistent associations between long-term air pollution exposure and natural-cause mortality with both approaches, though estimates partly differed in individual cohorts with no systematic pattern. The application of multiple modelling methods might help to improve causal inference. 299 of 300 words.
大多数研究使用传统回归模型来研究长期暴露于空气污染对健康的影响,尽管已有替代方法,如因果推断方法。然而,很少有研究应用因果模型,并且与传统方法的比较也很少。因此,我们在一个大型多中心队列环境中使用传统的 Cox 模型和因果模型比较了自然原因死亡率与细颗粒物(PM)和二氧化氮(NO)暴露之间的关联。我们分析了来自 11 个欧洲国家的 8 个特征明确的队列(综合队列)和 7 个行政队列的数据。来自全欧洲模型的年平均 PM 和 NO 被分配到基线居住地址,并根据选定的截止值(PM:10、12、15μg/m³;NO:20、40μg/m³)进行二分。对于每种污染物,我们将倾向得分估计为暴露于给定协变量的条件可能性,并得出相应的逆概率权重(IPW)。我们应用 Cox 比例风险模型 i)调整所有协变量(“传统 Cox”)和 ii)根据 IPW 加权(“因果模型”)。在综合队列和行政队列中,分别有 325367 人和 28063809 人死亡,其中 47131 人和 3580264 人死于自然原因。对于 PM 高于 vs. 低于 12μg/m³,传统模型和因果模型在综合队列中的自然原因死亡率的危险比(HR)分别为 1.17(95%CI 1.13-1.21)和 1.15(1.11-1.19),在行政队列中分别为 1.03(1.01-1.06)和 1.02(0.97-1.09)。对于 NO 高于 vs. 低于 20μg/m³,在综合队列和行政队列中的 HR 分别为 1.12(1.09-1.14)和 1.07(1.05-1.09)和 1.06(95%CI 1.03-1.08)和 1.05(1.02-1.07)。总之,我们使用两种方法观察到长期空气污染暴露与自然原因死亡率之间的关联大多一致,尽管个别队列中的估计值存在差异,且没有系统模式。应用多种建模方法可能有助于提高因果推断。共 300 个单词,翻译了 299 个。