School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
Bioelectrochemistry. 2023 Aug;152:108412. doi: 10.1016/j.bioelechem.2023.108412. Epub 2023 Mar 14.
Low-alloy, high-strength structural steel AISI 8630 is exposed to severe microbiologically influenced corrosion (MIC) in its application environment. To address this issue, we independently designed and developed an AISI 8630 steel containing 0.4 wt% Cu (Cu-AISI 8630) to exploit the Cu antimicrobial effect. The corrosion behavior of two steels in the presence of marine Pseudomonas aeruginosa biofilm was explored by analyzing weight loss, electrochemical tests, SEM images, corrosion pit dimensions, and corrosion products. The electrochemical test results showed an increase in R and a significant positive shift in E for Cu-AISI 8630 steel compared to AISI 8630 steel during the immersion cycles. A comparison of the pit morphology of AISI 8630 steel and Cu-AISI 8630 steel after 14 days showed that the maximum MIC pit depth was significantly reduced in the latter compared to the former (3.65 μm vs 9.47 μm). The XPS results showed that protective CuO and CuO layers were formed on the surface of Cu-AISI 8630 steel. The experimental results show that Cu improves the MIC resistance of Pseudomonas aeruginosa biofilms significantly.
低合金高强度结构钢 AISI 8630 在其应用环境中受到严重的微生物影响腐蚀(MIC)的影响。为了解决这个问题,我们自主设计和开发了一种含有 0.4wt%Cu(Cu-AISI 8630)的 AISI 8630 钢,以利用 Cu 的抗菌效果。通过分析重量损失、电化学测试、SEM 图像、腐蚀坑尺寸和腐蚀产物,研究了两种钢在海洋假单胞菌生物膜存在下的腐蚀行为。电化学测试结果表明,与 AISI 8630 钢相比,Cu-AISI 8630 钢在浸泡循环过程中 R 增加,E 显著正移。比较 AISI 8630 钢和 Cu-AISI 8630 钢在 14 天后的腐蚀坑形貌,发现后者的最大 MIC 腐蚀坑深度明显低于前者(3.65μm 对 9.47μm)。XPS 结果表明,在 Cu-AISI 8630 钢表面形成了保护性的 CuO 和 CuO 层。实验结果表明,Cu 显著提高了铜绿假单胞菌生物膜的抗 MIC 能力。