Teixido-Orries Irene, Molino Francisco, Femenias Antoni, Ramos Antonio J, Marín Sonia
Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XIA, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain.
Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XIA, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain.
Food Chem. 2023 Aug 15;417:135924. doi: 10.1016/j.foodchem.2023.135924. Epub 2023 Mar 15.
Deoxynivalenol (DON) is the most occurring mycotoxin in oat and oat-based products. Near-infrared hyperspectral imaging (NIR-HSI) has been proposed as a promising methodology for analysing DON contamination in the food industry. The present study aims to apply NIR-HSI for DON detection in oat kernels and to quantify and classify naturally DON-contaminated oat samples. Unground and ground oat samples were scanned by NIR-HSI before their DON content was determined by HPLC. The data were pre-treated and analysed by PLS regression and four classification methods. The most efficient DON prediction model was for unground samples (R = 0.75 and RMSEP = 403.18 μg/kg), using twelve characteristic wavelengths with a special interest in 1203 and 1388 nm. The random forest algorithm of unground samples according to the EU maximum limit for unprocessed oats (1750 μg/kg) achieved a classification accuracy of 77.8 %. These findings indicate that NIR-HSI is a promising tool for detecting DON in oats.
脱氧雪腐镰刀菌烯醇(DON)是燕麦及燕麦制品中最常见的霉菌毒素。近红外高光谱成像(NIR-HSI)已被提议作为食品工业中分析DON污染的一种有前景的方法。本研究旨在将NIR-HSI应用于燕麦粒中DON的检测,并对天然受DON污染的燕麦样品进行定量和分类。在通过高效液相色谱法(HPLC)测定未研磨和研磨后的燕麦样品的DON含量之前,先用NIR-HSI对其进行扫描。数据经过预处理,并采用偏最小二乘回归(PLS)和四种分类方法进行分析。最有效的DON预测模型是针对未研磨样品的(R = 0.75,RMSEP = 403.18 μg/kg),使用了12个特征波长,其中对1203和1388 nm特别关注。根据欧盟未加工燕麦的最大限量(1750 μg/kg),未研磨样品的随机森林算法分类准确率达到了77.8%。这些发现表明,NIR-HSI是检测燕麦中DON的一种有前景的工具。