Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
Anal Chim Acta. 2023 Apr 29;1252:341037. doi: 10.1016/j.aca.2023.341037. Epub 2023 Mar 3.
In this study, a novel sensing strategy based on double sensing/actuating pathway is demonstrated, being capable to trigger the DNA-based AND gate for the sensitive and selective detection of hepatitis B virus DNA (HBV-DNA). Such an approach encompasses an enzymatic machinery logically operated using the variation of physiologically relevant biomarkers for liver dysfunctions. Alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) are used as inputs of an AND gate generating an output signal, namely lactate. In particular, lactate is oxidized back to pyruvate at the anodic electrode by lactate oxidase connected in mediated electron transfer through ferrocene moieties (creating an amplifying recycling mechanism). The anodic electrode is further connected with a Myrothecium verrucaria bilirubin oxidase (MvBOx) based biocathode modified with SiO nanoparticles (SiONPs) functionalized with phenyl boronic acid and trigonelline, triggering the release of quenching DNA (qDNA) upon local pH change at the electrode surface (notably, modified SiONPs gets negatively recharged upon local pH gradient releasing negatively charged DNA). Next, the released qDNA labeled with BHQ2 and detecting DNA (dDNA, labeled with FAM) are detecting HBV-DNA. The proposed biosensor can discriminate between the absence and presence of HBV-DNA setting the threshold at 0.05 fM in model buffer solutions and 1 fM in human serum. This enzymatic/DNA logic network can be of particular interest for future biomedical applications (e.g., early detection of liver cancer disease etc.). In the future development this technology could be easily integrated with a smartphone camera, allowing more user-friendly applications.
在这项研究中,展示了一种基于双传感/驱动途径的新型传感策略,能够触发基于 DNA 的与门,用于灵敏和选择性检测乙型肝炎病毒 DNA (HBV-DNA)。这种方法包含了一种酶学机制,该机制使用与肝功能障碍相关的生理相关生物标志物的变化进行逻辑操作。丙氨酸氨基转移酶 (ALT) 和乳酸脱氢酶 (LDH) 用作与门的输入,生成输出信号,即乳酸。特别是,乳酸通过连接在介体电子转移中的乳酸氧化酶在阳极电极处被氧化回丙酮酸(创建放大的循环机制)。阳极电极进一步与米曲霉胆红素氧化酶 (MvBOx) 连接,该酶修饰有纳米硅粒子 (SiONPs),SiONPs 用苯硼酸和瓜氨酸官能化,在电极表面局部 pH 变化时触发猝灭 DNA (qDNA) 的释放(值得注意的是,修饰后的 SiONPs 在局部 pH 梯度下带负电荷,释放带负电荷的 DNA)。接下来,用 BHQ2 标记的释放的 qDNA 和检测 DNA (dDNA,用 FAM 标记)检测 HBV-DNA。该生物传感器可以在模型缓冲溶液中在 0.05 fM 的阈值下和在人血清中在 1 fM 的阈值下区分 HBV-DNA 的存在与否。这种酶/DNA 逻辑网络对于未来的生物医学应用可能具有特别的意义(例如,肝癌的早期检测等)。在未来的发展中,该技术可以很容易地与智能手机摄像头集成,从而实现更便于用户使用的应用。