Suppr超能文献

机器学习方法在癌症幸存者重返工作岗位研究中的比较:以 CONSTANCES 队列中与工作相关因素的乳腺癌幸存者为例。

Comparison of Machine Learning Methods in the Study of Cancer Survivors' Return to Work: An Example of Breast Cancer Survivors with Work-Related Factors in the CONSTANCES Cohort.

机构信息

Univ Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, IRSET-ESTER, SFR ICAT, Angers, F-49000, France.

Univ Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, IRSET ESTER, SFR ICAT, Angers, F-49000, France.

出版信息

J Occup Rehabil. 2023 Dec;33(4):750-756. doi: 10.1007/s10926-023-10112-8. Epub 2023 Mar 20.

Abstract

PURPOSE

Machine learning (ML) methods showed a higher accuracy in identifying individuals without cancer who were unable to return to work (RTW) compared to the classical methods (e.g. logistic regression models). We therefore aim to discuss the value of these methods in relation to RTW for cancer survivors.

METHODS

Breast cancer (BC) survivors who were working at diagnosis within the CONSTANCES cohort were included in the study. RTW was assessed five years after the BC diagnosis (early retirement was considered as non-RTW). Age and occupation at diagnosis, and physical occupational job exposures assessed using the Job Exposure Matrix, JEM-CONSTANCES, were evaluated as predictors of RTW five years after BC diagnosis. The following four ML methods were used: (i) k-nearest neighbors; (ii) random forest; (iii) neural network; and (iv) elastic net.

RESULTS

The training sample included 683 BC survivors (RTW: 85.7%), and the test sample 171 (RTW: 85.4%). The elastic net method had the best results despite low sensitivity (accuracy = 76.6%; sensitivity = 31.7%; specificity = 90.8%), and the random forest model was the most accurate (= 79.5%) but also the least sensitive (= 14.3%).

CONCLUSION

This study takes a first step towards opening up new possibilities for identifying the occupational determinants of cancer survivors' RTW. Further work, including a larger sample size, and more predictor variables, is now needed.

摘要

目的

机器学习(ML)方法在识别无法重返工作岗位(RTW)的无癌症个体方面比传统方法(例如逻辑回归模型)具有更高的准确性。因此,我们旨在讨论这些方法在癌症幸存者 RTW 方面的价值。

方法

在 CONSTANCES 队列中,将在诊断时正在工作的乳腺癌(BC)幸存者纳入研究。在 BC 诊断后五年评估 RTW(提前退休被视为非 RTW)。评估年龄和诊断时的职业以及使用职业暴露矩阵 JEM-CONSTANCES 评估的身体职业工作暴露,作为 BC 诊断后五年 RTW 的预测因素。使用以下四种 ML 方法:(i)k-最近邻;(ii)随机森林;(iii)神经网络;和(iv)弹性网。

结果

训练样本包括 683 名 BC 幸存者(RTW:85.7%),测试样本包括 171 名(RTW:85.4%)。尽管敏感性低(准确性=76.6%;敏感性=31.7%;特异性=90.8%),但弹性网方法的结果最好,而随机森林模型最准确(=79.5%)但也最不敏感(=14.3%)。

结论

本研究为确定癌症幸存者 RTW 的职业决定因素开辟了新的可能性。现在需要进一步的工作,包括更大的样本量和更多的预测变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验