Suppr超能文献

基因组数据分析中的Transformer架构与注意力机制:全面综述

Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review.

作者信息

Choi Sanghyuk Roy, Lee Minhyeok

机构信息

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.

出版信息

Biology (Basel). 2023 Jul 22;12(7):1033. doi: 10.3390/biology12071033.

Abstract

The emergence and rapid development of deep learning, specifically transformer-based architectures and attention mechanisms, have had transformative implications across several domains, including bioinformatics and genome data analysis. The analogous nature of genome sequences to language texts has enabled the application of techniques that have exhibited success in fields ranging from natural language processing to genomic data. This review provides a comprehensive analysis of the most recent advancements in the application of transformer architectures and attention mechanisms to genome and transcriptome data. The focus of this review is on the critical evaluation of these techniques, discussing their advantages and limitations in the context of genome data analysis. With the swift pace of development in deep learning methodologies, it becomes vital to continually assess and reflect on the current standing and future direction of the research. Therefore, this review aims to serve as a timely resource for both seasoned researchers and newcomers, offering a panoramic view of the recent advancements and elucidating the state-of-the-art applications in the field. Furthermore, this review paper serves to highlight potential areas of future investigation by critically evaluating studies from 2019 to 2023, thereby acting as a stepping-stone for further research endeavors.

摘要

深度学习的出现和快速发展,特别是基于Transformer的架构和注意力机制,已经在包括生物信息学和基因组数据分析在内的多个领域产生了变革性影响。基因组序列与语言文本的相似性使得在从自然语言处理到基因组数据等领域取得成功的技术得以应用。本综述对Transformer架构和注意力机制在基因组和转录组数据应用中的最新进展进行了全面分析。本综述的重点是对这些技术进行批判性评估,讨论它们在基因组数据分析背景下的优缺点。随着深度学习方法的快速发展,持续评估和反思该研究的现状和未来方向变得至关重要。因此,本综述旨在为经验丰富的研究人员和新手提供及时的资源,全面展示近期进展并阐明该领域的前沿应用。此外,本综述通过批判性评估2019年至2023年的研究,突出了未来潜在的研究领域,从而为进一步的研究工作奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8f4/10376273/77d41c59a485/biology-12-01033-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验