Suppr超能文献

预测呼吸重症监护病房中由 - 引起的医院获得性和呼吸机相关性肺炎患者 90 天死亡率的列线图。

Nomogram for predicting 90-day mortality in patients with -caused hospital-acquired and ventilator-associated pneumonia in the respiratory intensive care unit.

机构信息

Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.

Department of Hematology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China.

出版信息

J Int Med Res. 2023 Mar;51(3):3000605231161481. doi: 10.1177/03000605231161481.

Abstract

OBJECTIVE

We built a prediction model of mortality risk in patients the with (AB)-caused hospital-acquired (HAP) and ventilator-associated pneumonia (VAP).

METHODS

In this retrospective study, 164 patients with AB lower respiratory tract infection were admitted to the respiratory intensive care unit (RICU) from January 2019 to August 2021 (29 with HAP, 135 with VAP) and grouped randomly into a training cohort (n = 115) and a validation cohort (n = 49). Least absolute shrinkage and selection operator regression and multivariate Cox regression were used to identify risk factors of 90-day mortality. We built a nomogram prediction model and evaluated model discrimination and calibration using the area under the receiver operating characteristic curve (AUC) and calibration curves, respectively.

RESULTS

Four predictors (days in intensive care unit, infection with carbapenem-resistant AB, days of carbapenem use within 90 days of isolating AB, and septic shock) were used to build the nomogram. The AUC of the two groups was 0.922 and 0.823, respectively. The predictive model was well-calibrated; decision curve analysis showed the proposed nomogram would obtain a net benefit with threshold probability between 1% and 100%.

CONCLUSIONS

The nomogram model showed good performance, making it useful in managing patients with AB-caused HAP and VAP.

摘要

目的

我们建立了一个预测模型,用于评估由鲍曼不动杆菌引起的医院获得性肺炎(HAP)和呼吸机相关性肺炎(VAP)患者的死亡风险。

方法

在这项回顾性研究中,我们纳入了 2019 年 1 月至 2021 年 8 月期间在呼吸重症监护病房(RICU)住院的 164 例鲍曼不动杆菌下呼吸道感染患者(29 例 HAP,135 例 VAP),并将其随机分为训练队列(n=115)和验证队列(n=49)。使用最小绝对收缩和选择算子回归以及多变量 Cox 回归来识别 90 天死亡率的风险因素。我们建立了一个列线图预测模型,并使用接受者操作特征曲线(AUC)下的面积和校准曲线分别评估模型的区分度和校准度。

结果

四个预测因素(入住重症监护病房的天数、耐碳青霉烯鲍曼不动杆菌感染、分离出鲍曼不动杆菌后 90 天内使用碳青霉烯的天数和感染性休克)被用于构建列线图。两组的 AUC 分别为 0.922 和 0.823。预测模型具有良好的校准度;决策曲线分析表明,该列线图在阈值概率为 1%至 100%之间时可获得净获益。

结论

该列线图模型表现出良好的性能,对于管理由鲍曼不动杆菌引起的 HAP 和 VAP 患者具有一定的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de4/10028662/f0558d64e1b8/10.1177_03000605231161481-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验