Suppr超能文献

基于局部相位注意力机制的改进全卷积神经网络用于小视网膜血管分割

Improved fully convolutional neuron networks on small retinal vessel segmentation using local phase as attention.

作者信息

Kuang Xihe, Xu Xiayu, Fang Leyuan, Kozegar Ehsan, Chen Huachao, Sun Yue, Huang Fan, Tan Tao

机构信息

The University of Hong Kong, Pokfulam, Hong Kong SAR, China.

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

Front Med (Lausanne). 2023 Mar 1;10:1038534. doi: 10.3389/fmed.2023.1038534. eCollection 2023.

Abstract

Retinal images have been proven significant in diagnosing multiple diseases such as diabetes, glaucoma, and hypertension. Retinal vessel segmentation is crucial for the quantitative analysis of retinal images. However, current methods mainly concentrate on the segmentation performance of overall retinal vessel structures. The small vessels do not receive enough attention due to their small percentage in the full retinal images. Small retinal vessels are much more sensitive to the blood circulation system and have great significance in the early diagnosis and warning of various diseases. This paper combined two unsupervised methods, local phase congruency (LPC) and orientation scores (OS), with a deep learning network based on the U-Net as attention. And we proposed the U-Net using local phase congruency and orientation scores (UN-LPCOS), which showed a remarkable ability to identify and segment small retinal vessels. A new metric called sensitivity on a small ship ( ) was also proposed to evaluate the methods' performance on the small vessel segmentation. Our strategy was validated on both the DRIVE dataset and the data from Maastricht Study and achieved outstanding segmentation performance on both the overall vessel structure and small vessels.

摘要

视网膜图像已被证明在诊断多种疾病如糖尿病、青光眼和高血压方面具有重要意义。视网膜血管分割对于视网膜图像的定量分析至关重要。然而,当前方法主要集中在整体视网膜血管结构的分割性能上。小血管由于在整个视网膜图像中所占比例小而未得到足够关注。视网膜小血管对血液循环系统更为敏感,在各种疾病的早期诊断和预警中具有重要意义。本文将两种无监督方法,局部相位一致性(LPC)和方向分数(OS),与基于U-Net的深度学习网络相结合作为注意力机制。并且我们提出了使用局部相位一致性和方向分数的U-Net(UN-LPCOS),它在识别和分割视网膜小血管方面表现出显著能力。还提出了一种名为小血管敏感度( )的新指标来评估这些方法在小血管分割上的性能。我们的策略在DRIVE数据集和马斯特里赫特研究的数据上均得到验证,并且在整体血管结构和小血管上都取得了出色的分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96a0/10014569/12b3944ab2d9/fmed-10-1038534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验