Suppr超能文献

一种用于追踪神经元和视网膜图像中丝状结构的图论方法。

A Graph-Theoretical Approach for Tracing Filamentary Structures in Neuronal and Retinal Images.

出版信息

IEEE Trans Med Imaging. 2016 Jan;35(1):257-72. doi: 10.1109/TMI.2015.2465962. Epub 2015 Aug 24.

Abstract

The aim of this study is about tracing filamentary structures in both neuronal and retinal images. It is often crucial to identify single neurons in neuronal networks, or separate vessel tree structures in retinal blood vessel networks, in applications such as drug screening for neurological disorders or computer-aided diagnosis of diabetic retinopathy. Both tasks are challenging as the same bottleneck issue of filament crossovers is commonly encountered, which essentially hinders the ability of existing systems to conduct large-scale drug screening or practical clinical usage. To address the filament crossovers' problem, a two-step graph-theoretical approach is proposed in this paper. The first step focuses on segmenting filamentary pixels out of the background. This produces a filament segmentation map used as input for the second step, where they are further separated into disjointed filaments. Key to our approach is the idea that the problem can be reformulated as label propagation over directed graphs, such that the graph is to be partitioned into disjoint sub-graphs, or equivalently, each of the neurons (vessel trees) is separated from the rest of the neuronal (vessel) network. This enables us to make the interesting connection between the tracing problem and the digraph matrix-forest theorem in algebraic graph theory for the first time. Empirical experiments on neuronal and retinal image datasets demonstrate the superior performance of our approach over existing methods.

摘要

本研究旨在追踪神经元和视网膜图像中的丝状结构。在药物筛选神经紊乱或糖尿病视网膜病变的计算机辅助诊断等应用中,识别神经元网络中的单个神经元或视网膜血管网络中的单独血管树结构通常至关重要。这两个任务都具有挑战性,因为相同的瓶颈问题即丝状交叉普遍存在,这实质上阻碍了现有系统进行大规模药物筛选或实际临床应用的能力。为了解决丝状交叉问题,本文提出了一种两步图论方法。第一步专注于将丝状像素从背景中分割出来。这会生成一个丝状分割图,作为第二步的输入,其中进一步将它们分离成不相交的丝状结构。我们方法的关键是将问题重新表述为有向图上的标签传播,以便将图分割成不相交的子图,或者等效地,将每个神经元(血管树)与神经元(血管)网络的其余部分分离。这使我们能够首次在代数图论中的有向图矩阵-森林定理之间建立追踪问题的有趣联系。在神经元和视网膜图像数据集上的实证实验表明,我们的方法优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验