Suppr超能文献

阿片类药物使用障碍患者的健康社会决定因素:通过跨领域合作以及可重复的、以数据为中心的笔记本式工作流程来改善数据收集、整合与使用。

Social determinants of health derived from people with opioid use disorder: Improving data collection, integration and use with cross-domain collaboration and reproducible, data-centric, notebook-style workflows.

作者信息

Markatou Marianthi, Kennedy Oliver, Brachmann Michael, Mukhopadhyay Raktim, Dharia Arpan, Talal Andrew H

机构信息

Department of Biostatistics (CDSE Program), University at Buffalo, Buffalo, NY, United States.

Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.

出版信息

Front Med (Lausanne). 2023 Mar 2;10:1076794. doi: 10.3389/fmed.2023.1076794. eCollection 2023.

Abstract

Deriving social determinants of health from underserved populations is an important step in the process of improving the well-being of these populations and in driving policy improvements to facilitate positive change in health outcomes. Collection, integration, and effective use of clinical data for this purpose presents a variety of specific challenges. We assert that combining expertise from three distinct domains, specifically, medical, statistical, and computer and data science can be applied along with provenance-aware, self-documenting workflow tools. This combination permits data integration and facilitates the creation of reproducible workflows and usable (reproducible) results from the sensitive and disparate sources of clinical data that exist for underserved populations.

摘要

从服务不足人群中推导健康的社会决定因素是改善这些人群福祉以及推动政策改进以促进健康结果积极变化过程中的重要一步。为此目的收集、整合和有效使用临床数据存在各种具体挑战。我们断言,将医学、统计学以及计算机与数据科学这三个不同领域的专业知识结合起来,并与具有出处感知、自我记录功能的工作流程工具一起应用。这种结合允许进行数据整合,并有助于从服务不足人群所存在的敏感且不同的临床数据源创建可重复的工作流程和可用(可重复)的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4152/10017859/53d8d39d1252/fmed-10-1076794-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验