Sun Gongchen, Pan Zehao, Senapati Satyajyoti, Chang Hsueh-Chia
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Phys Rev Appl. 2017 Jun;7(6). doi: 10.1103/physrevapplied.7.064024. Epub 2017 Jun 16.
We study the spatiotemporal dynamics of a microfluidic system with a nonselective microfluidic channel gated by an ion-selective membrane which separates the ion flux paths of cations and anions. To preserve electroneutrality, the ionic concentration in the system is shown to converge to a specific inhomogeneous distribution with robust constant current fluxes. A circuit scaling theory that collapses measured asymptotic currents verifies that this is a generic and robust mechanism insensitive to channel geometry, ion selectivity, and electrolyte ionic strength. This first temporally stationary but spatially inhomogeneous depletion front can be used for modulating ionic current and for isotachophoretic isolation of low-mobility molecules and exosomes on small diagnostic chips for various medical applications that require robust high-throughput and integrated platforms.
我们研究了一种微流控系统的时空动力学,该系统具有一个由离子选择性膜门控的非选择性微流控通道,该膜将阳离子和阴离子的离子通量路径分开。为了保持电中性,系统中的离子浓度显示会收敛到具有稳定恒定电流通量的特定非均匀分布。一种将测量的渐近电流进行归并的电路缩放理论验证了这是一种对通道几何形状、离子选择性和电解质离子强度不敏感的通用且稳健的机制。这种首个时间上稳定但空间上不均匀的耗尽前沿可用于调制离子电流,以及在各种需要稳健高通量和集成平台的医学应用的小型诊断芯片上对低迁移率分子和外泌体进行等速电泳分离。