Cavallo Margherita, Atzori Cesare, Signorile Matteo, Costantino Ferdinando, Venturi Diletta Morelli, Koutsianos Athanasios, Lomachenko Kirill A, Calucci Lucia, Martini Francesca, Giovanelli Andrea, Geppi Marco, Crocellà Valentina, Taddei Marco
Dipartimento di Chimica, Centro di Riferimento NIS e INSTM, Università di Torino Via G. Quarello 15, I-10135 and Via P. Giuria 7 I-10125 Torino Italy
European Synchrotron Radiation Facility 71 Avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France.
J Mater Chem A Mater. 2023 Feb 14;11(11):5568-5583. doi: 10.1039/d2ta09746j. eCollection 2023 Mar 14.
Adsorbents able to uptake large amounts of gases within a narrow range of pressure, , phase-change adsorbents, are emerging as highly interesting systems to achieve excellent gas separation performances with little energy input for regeneration. A recently discovered phase-change metal-organic framework (MOF) adsorbent is F4_MIL-140A(Ce), based on Ce and tetrafluoroterephthalate. This MOF displays a non-hysteretic step-shaped CO adsorption isotherm, reaching saturation in conditions of temperature and pressure compatible with real life application in post-combustion carbon capture, biogas upgrading and acetylene purification. Such peculiar behaviour is responsible for the exceptional CO/N selectivity and reverse CO/CH selectivity of F4_MIL-140A(Ce). Here, we combine data obtained from a wide pool of characterisation techniques - namely gas sorption analysis, infrared spectroscopy, powder X-ray diffraction, X-ray absorption spectroscopy, multinuclear solid state nuclear magnetic resonance spectroscopy and adsorption microcalorimetry - with periodic density functional theory simulations to provide evidence for the existence of a unique cooperative CO adsorption mechanism in F4_MIL-140A(Ce). Such mechanism involves the concerted rotation of perfluorinated aromatic rings when a threshold partial pressure of CO is reached, opening the gate towards an adsorption site where CO interacts with both open metal sites and the fluorine atoms of the linker.
能够在狭窄压力范围内大量吸收气体的吸附剂,即相变吸附剂,正成为极具吸引力的系统,有望在再生所需能量极少的情况下实现出色的气体分离性能。最近发现的一种相变金属有机框架(MOF)吸附剂是基于铈和四氟对苯二甲酸酯的F4_MIL-140A(Ce)。这种MOF呈现出非滞后的阶梯状CO吸附等温线,在与燃烧后碳捕获、沼气升级和乙炔净化等实际应用相兼容的温度和压力条件下达到饱和。这种特殊行为导致了F4_MIL-140A(Ce)具有出色的CO/N2选择性和反向CO/CH4选择性。在此,我们将从大量表征技术(即气体吸附分析、红外光谱、粉末X射线衍射、X射线吸收光谱、多核固态核磁共振光谱和吸附量热法)获得的数据与周期性密度泛函理论模拟相结合,以证明F4_MIL-140A(Ce)中存在独特的协同CO吸附机制。这种机制涉及当CO的分压达到阈值时,全氟芳环的协同旋转,从而打开通向一个吸附位点的通道,在该位点CO与开放金属位点和连接体的氟原子相互作用。