Suppr超能文献

帕金森病患者日常生活中的步态和转身特征增强了预测未来跌倒的能力。

Gait and turning characteristics from daily life increase ability to predict future falls in people with Parkinson's disease.

作者信息

Shah Vrutangkumar V, Jagodinsky Adam, McNames James, Carlson-Kuhta Patricia, Nutt John G, El-Gohary Mahmoud, Sowalsky Kristen, Harker Graham, Mancini Martina, Horak Fay B

机构信息

Department of Neurology, Oregon Health & Science University, Portland, OR, United States.

APDM Wearable Technologies, A Clario Company, Portland, OR, United States.

出版信息

Front Neurol. 2023 Feb 28;14:1096401. doi: 10.3389/fneur.2023.1096401. eCollection 2023.

Abstract

OBJECTIVES

To investigate if digital measures of gait (walking and turning) collected passively over a week of daily activities in people with Parkinson's disease (PD) increases the discriminative ability to predict future falls compared to fall history alone.

METHODS

We recruited 34 individuals with PD (17 with history of falls and 17 non-fallers), age: 68 ± 6 years, MDS-UPDRS III ON: 31 ± 9. Participants were classified as fallers (at least one fall) or non-fallers based on self-reported falls in past 6 months. Eighty digital measures of gait were derived from 3 inertial sensors (Opal V2 System) placed on the feet and lower back for a week of passive gait monitoring. Logistic regression employing a "best subsets selection strategy" was used to find combinations of measures that discriminated future fallers from non-fallers, and the Area Under Curve (AUC). Participants were followed email every 2 weeks over the year after the study for self-reported falls.

RESULTS

Twenty-five subjects reported falls in the follow-up year. Quantity of gait and turning measures (e.g., number of gait bouts and turns per hour) were similar in future fallers and non-fallers. The AUC to discriminate future fallers from non-fallers using fall history alone was 0.77 (95% CI: [0.50-1.00]). In contrast, the highest AUC for gait and turning digital measures with 4 combinations was 0.94 [0.84-1.00]. From the top 10 models (all AUCs>0.90) via the best subsets strategy, the most consistently selected measures were variability of toe-out angle of the foot (9 out of 10), pitch angle of the foot during mid-swing (8 out of 10), and peak turn velocity (7 out of 10).

CONCLUSIONS

These findings highlight the importance of considering precise digital measures, captured sensors strategically placed on the feet and low back, to quantify several different aspects of gait (walking and turning) during daily life to improve the classification of future fallers in PD.

摘要

目的

研究在帕金森病(PD)患者日常活动的一周时间内被动收集的步态(行走和转身)数字测量指标,与仅依据跌倒史相比,是否能提高预测未来跌倒的判别能力。

方法

我们招募了34名PD患者(17名有跌倒史,17名无跌倒史),年龄:68±6岁,MDS-UPDRS III开启状态:31±9。根据患者自我报告的过去6个月内的跌倒情况,将参与者分为跌倒者(至少有一次跌倒)或非跌倒者。通过放置在足部和下背部的3个惯性传感器(Opal V2系统)进行为期一周的被动步态监测,得出80项步态数字测量指标。采用“最佳子集选择策略”的逻辑回归来找出能够区分未来跌倒者和非跌倒者的测量指标组合以及曲线下面积(AUC)。在研究后的一年中,每2周通过电子邮件随访参与者,了解其自我报告的跌倒情况。

结果

25名受试者在随访年度报告了跌倒情况。未来跌倒者和非跌倒者的步态和转身测量指标数量(例如,每小时的步态次数和转身次数)相似。仅使用跌倒史来区分未来跌倒者和非跌倒者的AUC为0.77(95%CI:[0.50 - 1.00])。相比之下,4种组合的步态和转身数字测量指标的最高AUC为0.94[0.84 - 1.00]。在通过最佳子集策略得出的前10个模型(所有AUC>0.90)中,最常被选中的测量指标是足部外展角的变异性(10个中有9个)中期摆动时足部的俯仰角(10个中有8个)以及峰值转身速度(10个中有7个)。

结论

这些发现凸显了考虑精确数字测量指标的重要性,这些指标通过战略性地放置在足部和下背部的传感器获取,以量化日常生活中步态(行走和转身)的几个不同方面,从而改善帕金森病患者未来跌倒者的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ab/10015637/1569a79fbe2f/fneur-14-1096401-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验