Stroek Wowa, Albrecht Martin
Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern CH-3012 Bern Switzerland
Chem Sci. 2022 Dec 28;14(11):2849-2859. doi: 10.1039/d2sc04170g. eCollection 2023 Mar 15.
Formation of ubiquitous C-N bonds traditionally uses prefunctionalized carbon precursors. Recently, metal-catalyzed amination of unfunctionalized C-H bonds with azides has become an attractive and atom-economic strategy for C-N bond formation, though all catalysts contain sophisticated ligands. Here, we report Fe(HMDS) (HMDS = N(SiMe) ) as an easy-to-prepare catalyst for intramolecular C-H amination. The catalyst shows unprecedented turnover frequencies (110 h 70 h reported to date) and requires no additives. Amination is successful for benzylic and aliphatic C-H bonds (>80% yield) and occurs even at room temperature. The simplicity of the catalyst enabled for the first time comprehensive mechanistic investigations. Kinetic, stoichiometric, and computational studies unveiled the intimate steps of the C-H amination process, including the resting state of the catalyst and turnover-limiting N loss of the coordinated azide. The high reactivity of the iron imido intermediate is rationalized by its complex spin system revealing imidyl and nitrene character.
传统上,普遍存在的C-N键的形成使用预官能化的碳前体。最近,金属催化未官能化的C-H键与叠氮化物的胺化反应已成为一种有吸引力的、原子经济的C-N键形成策略,尽管所有催化剂都含有复杂的配体。在此,我们报道了Fe(HMDS)(HMDS = N(SiMe))作为一种易于制备的分子内C-H胺化催化剂。该催化剂显示出前所未有的周转频率(迄今报道为110 h 70 h),且无需添加剂。苄基和脂肪族C-H键的胺化反应成功(产率>80%),甚至在室温下也能发生。该催化剂的简单性首次使得全面的机理研究成为可能。动力学、化学计量学和计算研究揭示了C-H胺化过程的详细步骤,包括催化剂的静止状态和配位叠氮化物的周转限制N损失。铁亚胺中间体的高反应活性通过其复杂的自旋系统得以合理化,该系统揭示了亚胺基和氮烯的特性。