Bell Nicola L, Gladkikh Marina, Fraser Cameron, Elsayed Mostafa, Richards Emma, Turnbull Richard Drummond
School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cardiff, CD24 4HQ, UK.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202505408. doi: 10.1002/anie.202505408. Epub 2025 Jun 17.
Silylamides are important ligands in coordination chemistry for their ability to stabilise low coordination numbers and provide soluble, and even volatile, metal complexes. Such compounds provide valuable insights into the fundamental bonding and reactivity of their respective metals. Despite the wealth of homo- and heteroleptic hexamethyldisilazide complexes of divalent 3d ions (Sc-Ni, Zn), attempts to access the corresponding divalent copper complexes have yielded only Cu(I) species. Herein, we demonstrate the stabilisation and isolation of a formally Cu(II) bis-hexamethyldisilazide which was achieved by implementing novel digital chemistry tools. In order to successfully isolate (DMAP)Cu(N{SiMe}) (DMAP = N,N-dimethylaminopyridine), we investigated the roles of the co-ligand and silylamide transfer reagent in the kinetics of its formation. Crucial to these studies was our newly developed "cobotic" Schlenk line which provides digital control of the atmosphere under which we conduct our highly reactive syntheses. In digitising Schlenk-line handling, we have improved synthetic productivity by creating protocols for automated inertisation, solvent evaporation, liquid handling and crystallisation all while capturing reaction log data. Importantly, our Cu silylamide synthesis provides a case study showing that our cobotics approach allows for the discovery and isolation of unstable species which may remain elusive by traditional manual or fully autonomous methodologies.
硅酰胺在配位化学中是重要的配体,因为它们能够稳定低配位数,并提供可溶甚至易挥发的金属配合物。这类化合物为深入了解其各自金属的基本键合和反应性提供了有价值的见解。尽管二价3d离子(Sc-Ni、Zn)有大量的均配和杂配六甲基二硅氮化物配合物,但尝试制备相应的二价铜配合物却只得到了Cu(I)物种。在此,我们展示了一种形式上为Cu(II)的双六甲基二硅氮化物的稳定化和分离,这是通过采用新型数字化学工具实现的。为了成功分离(DMAP)Cu(N{SiMe})(DMAP = N,N-二甲基氨基吡啶),我们研究了共配体和硅酰胺转移试剂在其形成动力学中的作用。这些研究的关键是我们新开发的“协作式”Schlenk线,它能对我们进行高反应性合成时的气氛提供数字控制。在将Schlenk线操作数字化的过程中,我们通过创建自动惰性化、溶剂蒸发、液体处理和结晶的协议,同时记录反应日志数据,提高了合成效率。重要的是,我们的铜硅酰胺合成提供了一个案例研究,表明我们的协作机器人方法能够发现和分离不稳定的物种,而这些物种可能用传统的手动或完全自主的方法难以获得。